reklama - zainteresowany?

Mastering Algorithms with C - Helion

Mastering Algorithms with C
ebook
Autor: Kyle Loudon
ISBN: 978-05-965-5195-7
stron: 562, Format: ebook
Data wydania: 2009-02-09
Księgarnia: Helion

Cena książki: 126,65 zł (poprzednio: 147,27 zł)
Oszczędzasz: 14% (-20,62 zł)

Dodaj do koszyka Mastering Algorithms with C

Tagi: Algorytmy - Programowanie

There are many books on data structures and algorithms, including some with useful libraries of C functions. Mastering Algorithms with C offers you a unique combination of theoretical background and working code. With robust solutions for everyday programming tasks, this book avoids the abstract style of most classic data structures and algorithms texts, but still provides all of the information you need to understand the purpose and use of common programming techniques.

Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.

Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.

Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.

Contents include:

  • Pointers
  • Recursion
  • Analysis of algorithms
  • Data structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)
  • Sorting and searching
  • Numerical methods
  • Data compression
  • Data encryption
  • Graph algorithms
  • Geometric algorithms

Dodaj do koszyka Mastering Algorithms with C

 

Osoby które kupowały "Mastering Algorithms with C", wybierały także:

  • Python na maturze. Kurs video. Algorytmy i podstawy j
  • Algorytmy kryptograficzne. Przewodnik po algorytmach w blockchain, kryptografii kwantowej, protoko
  • Informatyk samouk. Przewodnik po strukturach danych i algorytmach dla pocz
  • My
  • Nauka algorytm

Dodaj do koszyka Mastering Algorithms with C

Spis treści

Mastering Algorithms with C eBook -- spis treści

  • Mastering Algorithms with C
  • A Note Regarding Supplemental Files
  • Preface
    • Organization
      • Part I
      • Part II
      • Part III
    • Key Features
    • About the Code
    • Conventions
    • How to Contact Us
    • Acknowledgments
  • I. Preliminaries
    • 1. Introduction
      • 1.1. An Introduction to Data Structures
      • 1.2. An Introduction to Algorithms
        • 1.2.1. General Approaches in Algorithm Design
          • 1.2.1.1. Randomized algorithms
          • 1.2.1.2. Divide-and-conquer algorithms
          • 1.2.1.3. Dynamic-programming solutions
          • 1.2.1.4. Greedy algorithms
          • 1.2.1.5. Approximation algorithms
      • 1.3. A Bit About Software Engineering
      • 1.4. How to Use This Book
    • 2. Pointer Manipulation
      • 2.1. Pointer Fundamentals
      • 2.2. Storage Allocation
      • 2.3. Aggregates and Pointer Arithmetic
        • 2.3.1. Structures
        • 2.3.2. Arrays
      • 2.4. Pointers as Parameters to Functions
        • 2.4.1. Call-by-Reference Parameter Passing
        • 2.4.2. Pointers to Pointers as Parameters
      • 2.5. Generic Pointers and Casts
        • 2.5.1. Generic Pointers
        • 2.5.2. Casts
      • 2.6. Function Pointers
      • 2.7. Questions and Answers
      • 2.8. Related Topics
    • 3. Recursion
      • 3.1. Basic Recursion
      • 3.2. Tail Recursion
      • 3.3. Questions and Answers
      • 3.4. Related Topics
    • 4. Analysis of Algorithms
      • 4.1. Worst-Case Analysis
        • 4.1.1. Reasons for Worst-Case Analysis
      • 4.2. O-Notation
        • 4.2.1. Simple Rules for O-Notation
        • 4.2.2. O-Notation Example and Why It Works
      • 4.3. Computational Complexity
      • 4.4. Analysis Example: Insertion Sort
      • 4.5. Questions and Answers
      • 4.6. Related Topics
  • II. Data Structures
    • 5. Linked Lists
      • 5.1. Description of Linked Lists
      • 5.2. Interface for Linked Lists
        • list_init
        • list_destroy
        • list_ins_next
        • list_rem_next
        • list_size
        • list_head
        • list_tail
        • list_is_head
        • list_is_tail
        • list_data
        • list_next
      • 5.3. Implementation and Analysis of Linked Lists
        • 5.3.1. list_init
        • 5.3.2. list_destroy
        • 5.3.3. list_ins_next
        • 5.3.4. list_rem_next
        • 5.3.5. list_size, list_head, list_tail, list_is_tail,list_data, and list_next
      • 5.4. Linked List Example: Frame Management
      • 5.5. Description of Doubly-Linked Lists
      • 5.6. Interface for Doubly-Linked Lists
        • dlist_init
        • dlist_destroy
        • dlist_ins_next
        • dlist_ins_prev
        • dlist_remove
        • dlist_size
        • dlist_head
        • dlist_tail
        • dlist_is_head
        • dlist_is_tail
        • dlist_data
        • dlist_next
        • dlist_prev
      • 5.7. Implementation and Analysis of Doubly Linked Lists
        • 5.7.1. dlist_init
        • 5.7.2. dlist_destroy
        • 5.7.3. dlist_ins_next
        • 5.7.4. dlist_ins_ prev
        • 5.7.5. dlist_remove
        • 5.7.6. dlist_size, dlist_head, dlist_tail, dlist_is_head, dlist_is_tail, dlist_data, dlist_next, and dlist_ prev
      • 5.8. Description of Circular Lists
      • 5.9. Interface for Circular Lists
        • clist_init
        • clist_destroy
        • clist_ins_next
        • clist_rem_next
        • clist_size
        • clist_head
        • clist_data
        • clist_next
      • 5.10. Implementation and Analysis of Circular Lists
        • 5.10.1. clist_init
        • 5.10.2. clist_destroy
        • 5.10.3. clist_ins_next
        • 5.10.4. clist_rem_next
        • 5.10.5. clist_size, clist_head, clist_data, and clist_next
      • 5.11. Circular List Example: Second-Chance Page Replacement
      • 5.12. Questions and Answers
      • 5.13. Related Topics
    • 6. Stacks and Queues
      • 6.1. Description of Stacks
      • 6.2. Interface for Stacks
        • stack_init
        • stack_destroy
        • stack_ push
        • stack_ pop
        • stack_ peek
        • stack_size
      • 6.3. Implementation and Analysis of Stacks
        • 6.3.1. stack_init
        • 6.3.2. stack_destroy
        • 6.3.3. stack_ push
        • 6.3.4. stack_ pop
        • 6.3.5. stack_ peek, stack_size
      • 6.4. Description of Queues
      • 6.5. Interface for Queues
        • queue_init
        • queue_destroy
        • queue_enqueue
        • queue_dequeue
        • queue_ peek
        • queue_size
      • 6.6. Implementation and Analysis of Queues
        • 6.6.1. queue_init
        • 6.6.2. queue_destroy
        • 6.6.3. queue_enqueue
        • 6.6.4. queue_dequeue
        • 6.6.5. queue_ peek, queue_size
      • 6.7. Queue Example: Event Handling
      • 6.8. Questions and Answers
      • 6.9. Related Topics
    • 7. Sets
      • 7.1. Description of Sets
        • 7.1.1. Definitions
        • 7.1.2. Basic Operations
        • 7.1.3. Properties
      • 7.2. Interface for Sets
        • set_init
        • set_destroy
        • set_insert
        • set_remove
        • set_union
        • set_intersection
        • set_difference
        • set_is_member
        • set_is_subset
        • set_is_equal
        • set_size
      • 7.3. Implementation and Analysis of Sets
        • 7.3.1. set_init
        • 7.3.2. set_destroy
        • 7.3.3. set_insert
        • 7.3.4. set_remove
        • 7.3.5. set_union
        • 7.3.6. set_intersection
        • 7.3.7. set_difference
        • 7.3.8. set_is_member
        • 7.3.9. set_is_subset
        • 7.3.10. set_is_equal
        • 7.3.11. set_size
      • 7.4. Set Example: Set Covering
      • 7.5. Questions and Answers
      • 7.6. Related Topics
    • 8. Hash Tables
      • 8.1. Description of Chained Hash Tables
        • 8.1.1. Collision Resolution
        • 8.1.2. Selecting a Hash Function
          • 8.1.2.1. Division method
          • 8.1.2.2. Multiplication method
      • 8.2. Interface for Chained Hash Tables
        • chtbl_init
        • chtbl_destroy
        • chtbl_insert
        • chtbl_remove
        • chtbl_lookup
        • chtbl_size
      • 8.3. Implementation and Analysis of Chained Hash Tables
        • 8.3.1. chtbl_init
        • 8.3.2. chtbl_destroy
        • 8.3.3. chtbl_insert
        • 8.3.4. chtbl_remove
        • 8.3.5. chtbl_lookup
        • 8.3.6. chtbl_size
      • 8.4. Chained Hash Table Example: Symbol Tables
      • 8.5. Description of Open-Addressed Hash Tables
        • 8.5.1. Collision Resolution
          • 8.5.1.1. Linear probing
          • 8.5.1.2. Double hashing
      • 8.6. Interface for Open-Addressed Hash Tables
        • ohtbl_init
        • ohtbl_destroy
        • ohtbl_insert
        • ohtbl_remove
        • ohtbl_lookup
        • ohtbl_size
      • 8.7. Implementation and Analysisof Open Addressed Hash Tables
        • 8.7.1. ohtbl_init
        • 8.7.2. ohtbl_destroy
        • 8.7.3. ohtbl_insert
        • 8.7.4. ohtbl_remove
        • 8.7.5. ohtbl_lookup
        • 8.7.6. ohtbl_size
      • 8.8. Questions and Answers
      • 8.9. Related Topics
    • 9. Trees
      • 9.1. Description of Binary Trees
        • 9.1.1. Traversal Methods
          • 9.1.1.1. Preorder traversal
          • 9.1.1.2. Inorder traversal
          • 9.1.1.3. Postorder traversal
          • 9.1.1.4. Level-order traversal
        • 9.1.2. Tree Balancing
      • 9.2. Interface for Binary Trees
        • bitree_init
        • bitree_destroy
        • bitree_ins_left
        • bitree_ins_right
        • bitree_rem_left
        • bitree_rem_right
        • bitree_merge
        • bitree_size
        • bitree_root
        • bitree_is_eob
        • bitree_is_leaf
        • bitree_data
        • bitree_left
        • bitree_right
      • 9.3. Implementation and Analysis of Binary Trees
        • 9.3.1. bitree_init
        • 9.3.2. bitree_destroy
        • 9.3.3. bitree_ins_left
        • 9.3.4. bitree_ins_right
        • 9.3.5. bitree_rem_left
        • 9.3.6. bitree_rem_right
        • 9.3.7. bitree_merge
        • 9.3.8. bitree_size, bitree_root, bitree_is_eob, bitree_is_leaf, bitree_data, bitree_left, bitree_right
      • 9.4. Binary Tree Example: Expression Processing
      • 9.5. Description of Binary Search Trees
      • 9.6. Interface for Binary Search Trees
        • bistree_init
        • bistree_destroy
        • bistree_insert
        • bistree_remove
        • bistree_lookup
        • bistree_size
      • 9.7. Implementation and Analysis of Binary Search Trees
        • 9.7.1. Rotations in AVL Trees
          • 9.7.1.1. LL rotation
          • 9.7.1.2. LR rotation
          • 9.7.1.3. RR rotation
          • 9.7.1.4. RL rotation
        • 9.7.2. bistree_init
        • 9.7.3. bistree_destroy
        • 9.7.4. bistree_insert
        • 9.7.5. bistree_remove
        • 9.7.6. bistree_lookup
        • 9.7.7. bistree_size
      • 9.8. Questions and Answers
      • 9.9. Related Topics
    • 10. Heaps and Priority Queues
      • 10.1. Description of Heaps
      • 10.2. Interface for Heaps
        • heap_init
        • heap_destroy
        • heap_insert
        • heap_extract
        • heap_size
      • 10.3. Implementation and Analysis of Heaps
        • 10.3.1. heap_init
        • 10.3.2. heap_destroy
        • 10.3.3. heap_insert
        • 10.3.4. heap_extract
        • 10.3.5. heap_size
      • 10.4. Description of Priority Queues
      • 10.5. Interface for Priority Queues
        • pqueue_init
        • pqueue_destroy
        • pqueue_insert
        • pqueue_extract
        • pqueue_ peek
        • pqueue_size
      • 10.6. Implementation and Analysis of Priority Queues
      • 10.7. Priority Queue Example: Parcel Sorting
      • 10.8. Questions and Answers
      • 10.9. Related Topics
    • 11. Graphs
      • 11.1. Description of Graphs
        • 11.1.1. Search Methods
          • 11.1.1.1. Breadth-first search
          • 11.1.1.2. Depth-first search
      • 11.2. Interface for Graphs
        • graph_init
        • graph_destroy
        • graph_ins_vertex
        • graph_ins_edge
        • graph_rem_vertex
        • graph_rem_edge
        • graph_adjlist
        • graph_is_adjacent
        • graph_adjlists
        • graph_vcount
        • graph_ecount
      • 11.3. Implementation and Analysis of Graphs
        • 11.3.1. graph_init
        • 11.3.2. graph_destroy
        • 11.3.3. graph_ins_vertex
        • 11.3.4. graph_ins_edge
        • 11.3.5. graph_rem_vertex
        • 11.3.6. graph_rem_edge
        • 11.3.7. graph_adjlist
        • 11.3.8. graph_is_adjacent
        • 11.3.9. graph_adjlists, graph_vcount, graph_ecount
      • 11.4. Graph Example: Counting Network Hops
      • 11.5. Graph Example: Topological Sorting
      • 11.6. Questions and Answers
      • 11.7. Related Topics
  • III. Algorithms
    • 12. Sorting and Searching
      • 12.1. Description of Insertion Sort
      • 12.2. Interface for Insertion Sort
        • issort
      • 12.3. Implementation and Analysis of Insertion Sort
      • 12.4. Description of Quicksort
      • 12.5. Interface for Quicksort
        • qksort
      • 12.6. Implementation and Analysis of Quicksort
      • 12.7. Quicksort Example: Directory Listings
      • 12.8. Description of Merge Sort
      • 12.9. Interface for Merge Sort
        • mgsort
      • 12.10. Implementation and Analysis of Merge Sort
      • 12.11. Description of Counting Sort
      • 12.12. Interface for Counting Sort
        • ctsort
      • 12.13. Implementation and Analysis of Counting Sort
      • 12.14. Description of Radix Sort
      • 12.15. Interface for Radix Sort
        • rxsort
      • 12.16. Implementation and Analysis of Radix Sort
      • 12.17. Description of Binary Search
      • 12.18. Interface for Binary Search
        • bisearch
      • 12.19. Implementation and Analysis of Binary Search
      • 12.20. Binary Search Example: Spell Checking
      • 12.21. Questions and Answers
      • 12.22. Related Topics
    • 13. Numerical Methods
      • 13.1. Description of Polynomial Interpolation
        • 13.1.1. Constructing an Interpolating Polynomial
        • 13.1.2. Evaluating an Interpolating Polynomial
      • 13.2. Interface for Polynomial Interpolation
        • interpol
      • 13.3. Implementation and Analysis of Polynomial Interpolation
      • 13.4. Description of Least-Squares Estimation
      • 13.5. Interface for Least-Squares Estimation
        • lsqe
      • 13.6. Implementation and Analysis of Least-Squares Estimation
      • 13.7. Description of the Solution of Equations
        • 13.7.1. Finding Roots with Newtons Method
        • 13.7.2. Computing the Derivative of a Polynomial
        • 13.7.3. Understanding the First and Second Derivative
        • 13.7.4. Selecting an Initial Point for Newtons Method
        • 13.7.5. How Newtons Method Works
      • 13.8. Interface for the Solution of Equations
        • root
      • 13.9. Implementation and Analysis of the Solution of Equations
      • 13.10. Questions and Answers
      • 13.11. Related Topics
    • 14. Data Compression
      • 14.1. Description of Bit Operations
      • 14.2. Interface for Bit Operations
        • bit_ get
        • bit_set
        • bit_xor
        • bit_rot_left
      • 14.3. Implementation and Analysis of Bit Operations
        • 14.3.1. bit_ get
        • 14.3.2. bit_set
        • 14.3.3. bit_xor
        • 14.3.4. bit_rot_left
      • 14.4. Description of Huffman Coding
        • 14.4.1. Entropy and Minimum Redundancy
        • 14.4.2. Building a Huffman Tree
        • 14.4.3. Compressing and Uncompressing Data
        • 14.4.4. Effectiveness of Huffman Coding
      • 14.5. Interface for Huffman Coding
        • huffman_compress
        • huffman_uncompress
      • 14.6. Implementation and Analysis of Huffman Coding
        • 14.6.1. huffman_compress
        • 14.6.2. huffman_uncompress
      • 14.7. Huffman Coding Example: Optimized Networking
      • 14.8. Description of LZ77
        • 14.8.1. Maintaining a Dictionary of Phrases
        • 14.8.2. Compressing and Uncompressing Data
        • 14.8.3. Effectiveness of LZ77
      • 14.9. Interface for LZ77
        • lz77_compress
        • lz77_uncompress
      • 14.10. Implementation and Analysis of LZ77
        • 14.10.1. lz77_compress
        • 14.10.2. lz77_uncompress
      • 14.11. Questions and Answers
      • 14.12. Related Topics
    • 15. Data Encryption
      • 15.1. Description of DES
        • 15.1.1. Computing Subkeys
        • 15.1.2. Enciphering and Deciphering Data Blocks
      • 15.2. Interface for DES
        • des_encipher
        • des_decipher
      • 15.3. Implementation and Analysis of DES
        • 15.3.1. des_encipher
        • 15.3.2. des_decipher
      • 15.4. DES Example: Block Cipher Modes
      • 15.5. Description of RSA
        • 15.5.1. Computing Public and Private Keys
        • 15.5.2. Enciphering and Deciphering Data Blocks
      • 15.6. Interface for RSA
        • rsa_encipher
        • rsa_decipher
      • 15.7. Implementation and Analysis of RSA
        • 15.7.1. rsa_encipher
        • 15.7.2. rsa_decipher
      • 15.8. Questions and Answers
      • 15.9. Related Topics
    • 16. Graph Algorithms
      • 16.1. Description of Minimum Spanning Trees
        • 16.1.1. Prims Algorithm
      • 16.2. Interface for Minimum Spanning Trees
        • mst
      • 16.3. Implementation and Analysis of Minimum Spanning Trees
      • 16.4. Description of Shortest Paths
        • 16.4.1. Dijkstras Algorithm
      • 16.5. Interface for Shortest Paths
        • shortest
      • 16.6. Implementation and Analysis of Shortest Paths
      • 16.7. Shortest Paths Example: Routing Tables
      • 16.8. Description of the Traveling-Salesman Problem
        • 16.8.1. Applying the Nearest-Neighbor Heuristic
      • 16.9. Interface for the Traveling-Salesman Problem
        • tsp
      • 16.10. Implementation and Analysis of the Traveling-Salesman Problem
      • 16.11. Questions and Answers
      • 16.12. Related Topics
    • 17. Geometric Algorithms
      • 17.1. Description of Testing Whether Line Segments Intersect
        • 17.1.1. Standard Test for Intersecting Line Segments
        • 17.1.2. Computer Test for Intersecting Line Segments
      • 17.2. Interface for Testing Whether Line Segments Intersect
        • lint
      • 17.3. Implementation and Analysis of Testing Whether Line Segments Intersect
      • 17.4. Description of Convex Hulls
        • 17.4.1. Jarviss March
      • 17.5. Interface for Convex Hulls
        • cvxhull
      • 17.6. Implementation and Analysis of Convex Hulls
      • 17.7. Description of Arc Length on Spherical Surfaces
        • 17.7.1. Rectilinear and Spherical Coordinates
        • 17.7.2. Converting Between Coordinate Systems
        • 17.7.3. Computing the Length of an Arc
      • 17.8. Interface for Arc Length on Spherical Surfaces
        • arclen
      • 17.9. Implementation and Analysis of Arc Length on Spherical Surfaces
      • 17.10. Arc Length Example: Approximating Distances on Earth
      • 17.11. Questions and Answers
      • 17.12. Related Topics
  • Index
  • About the Author
  • Colophon
  • Copyright

Dodaj do koszyka Mastering Algorithms with C

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2024 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.