reklama - zainteresowany?

Konstrukcje I. Wybrane konstrukcje matematyki teoretycznej. Topologie miary i całki Lebesgue`a - Helion

Konstrukcje I. Wybrane konstrukcje matematyki teoretycznej. Topologie miary i całki Lebesgue`a
ebook
Autor: Grzegorz Andrzejczak
ISBN: 978-83-662-8763-1
stron: 169, Format: ebook
Data wydania: 2020-11-10
Księgarnia: Helion

Cena książki: 25,00 zł

Dodaj do koszyka Konstrukcje I. Wybrane konstrukcje matematyki teoretycznej. Topologie miary i całki Lebesgue`a

Tagi: Matematyka | Matematyka Europejczyka

"Pomysł i szczegółowa koncepcja prezentowanej publikacji „Wybrane konstrukcje matematyki teoretycznej...” są wynikiem obserwacji stanu wiedzy niezbyt licznej grupy studentów matematyki studiów doktoranckich prowadzonych od 2012 r. na Wydziale FTIMS Politechniki Łódzkiej. Absolwenci matematyki, po studiach z różnych uczelni, prezentują na ogół dość zaawansowaną wiedzę dotyczącą z zasady wąskich dyscyplin matematyki, pojmowanych jako odrębne i właściwie niezależne – niepowiązane w istotny sposób ze sobą. Zasadniczym celem pracy jest zatem pokazanie czytelnikowi wzajemnego przenikania wybranych, wskazanych w tytule działów matematyki, lokujących się w pobliżu szeroko pojętej analizy matematycznej."

(ze Wstępu)

Dodaj do koszyka Konstrukcje I. Wybrane konstrukcje matematyki teoretycznej. Topologie miary i całki Lebesgue`a

 

Osoby które kupowały "Konstrukcje I. Wybrane konstrukcje matematyki teoretycznej. Topologie miary i całki Lebesgue`a", wybierały także:

  • Matematyka. Kurs video. Teoria dla programisty i data science
  • Matematyka a programowanie. Kurs video. Od pojęcia liczby po płaszczyznę zespoloną w Pythonie
  • Statystyka. Kurs video. Przewodnik dla student
  • Matematyka. Kurs video.
  • Dziwna matematyka. Podróż ku nieskończoności

Dodaj do koszyka Konstrukcje I. Wybrane konstrukcje matematyki teoretycznej. Topologie miary i całki Lebesgue`a

Spis treści

Konstrukcje I. Wybrane konstrukcje matematyki teoretycznej. Topologie miary i całki Lebesgue`a eBook -- spis treści

Wstęp
1. Przestrzenie
    1.1 Przestrzenie topologiczne i metryczne
        1.1.1 Ciągłość, bazy i podbazy
        1.1.2 Czy istnienie funkcji rzeczywistych jest normalne?
        1.1.3 Miejsce dla przestrzeni metrycznych
        1.1.4 Zupełność i przeliczalność
        1.1.5 Podprzestrzenie
    1.2 Przestrzenie mierzalne
        1.2.1 Co jest – co może być mierzalne?
        1.2.2 Jak skonstruować σ−ciało?
        1.2.3 Zbiory i przestrzenie funkcji mierzalnych
    1.3 Miary – podstawowe definicje i konstrukcje
        1.3.1 Terminologia
        1.3.2 Miara Lebesgue’a ℓ na prostej
        1.3.3 Kryteria jednoznaczności miar
    1.4 Miary na σ−ciałach i σ−pierścieniach
        1.4.1 Czy wszystko musi być mierzalne?
        1.4.2 Dokładnie prawie wszędzie
        1.4.3 Miary borelowskie w przestrzeni metrycznej
    1.5 Śladami Carath´eodory’ego
        1.5.1 Pomiar z zewnątrz
        1.5.2 Podstawowe narzędzia
        1.5.3 Od czego zależy miara?
        1.5.4 Nieco regularności
    1.6 Zbiory zwarte, przestrzenie lokalnie zwarte
        1.6.1 Specyfika zbiorów zwartych
        1.6.2 Podalgebry rozdzielające punkty
        1.6.3 Lokalna zwartość
        1.6.4 Ważne przestrzenie funkcji
        1.6.5 Zbiory Baire’a
2. Wokół pojęcia produktu
    2.1 Kategorie
        2.1.1 Język diagramów
        2.1.2 Produkt – abstrakcja czy konkret?
    2.2 Topologie i σ−ciała
        2.2.1 Wspólne podstawy – i specyficzne różnice
        2.2.2 Przykłady i ćwiczenia
        2.2.3 Produkt zbiorów zwartych
        2.2.4 Produkt σ−pierścieni
    2.3 Produkt miar
        2.3.1 Podejście klasyczne
        2.3.2 Własności miary Lebesgue’a w Rn
        2.3.3 Skończony produkt dowolnych miar
        2.3.4 Specyfika miar probabilistycznych
    2.4 Podprzestrzenie w produktach
        2.4.1 Funkcje ciągłe jako współrzędne
        2.4.2 Uzwarcenia
        2.4.3 W stronę klasyfikacji
        2.4.4 Konstrukcja Wallmana
3. Miara – czy całka?
    3.1 Całka Lebesgue’a
        3.1.1 Zamiast konstrukcji – aksjomatyka
        3.1.2 Wnioski, konsekwencje
        3.1.3 Zamiana zmiennych w całce Lebesgue’a
        3.1.4 ... i rozszerzenia
        3.1.5 Całka względem produktu miar
        3.1.6 Przestrzenie Lp
Spis symboli i skrótów
Skorowidz
Bibliografia

Dodaj do koszyka Konstrukcje I. Wybrane konstrukcje matematyki teoretycznej. Topologie miary i całki Lebesgue`a

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2024 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.