reklama - zainteresowany?

Tableau Prep: Up & Running - Helion

Tableau Prep: Up & Running
ebook
Autor: Carl Allchin
ISBN: 978-14-920-7957-6
stron: 448, Format: ebook
Data wydania: 2020-08-03
Księgarnia: Helion

Cena książki: 194,65 zł (poprzednio: 218,71 zł)
Oszczędzasz: 11% (-24,06 zł)

Dodaj do koszyka Tableau Prep: Up & Running

Tagi: Analiza danych

For self-service data preparation, Tableau Prep is relatively easy to use—as long as you know how to clean and organize your datasets. Carl Allchin, from The Information Lab in London, gets you up to speed on Tableau Prep through a series of practical lessons that include methods for preparing, cleaning, automating, organizing, and outputting your datasets.

Based on Allchin’s popular blog, Preppin’ Data, this practical guide takes you step-by-step through Tableau Prep’s fundamentals. Self-service data preparation reduces the time it takes to complete data projects and improves the quality of your analyses. Discover how Tableau Prep helps you access your data and turn it into valuable information.

  • Know what to look for when you prepare data
  • Learn which Tableau Prep functions to use when working with data fields
  • Analyze the shape and profile of your dataset
  • Output data for analysis and learn how Tableau Prep automates your workflow
  • Learn how to clean your dataset using Tableau Prep functions
  • Explore ways to use Tableau Prep techniques in real-world scenarios
  • Make your data available to others by managing and documenting the output

Dodaj do koszyka Tableau Prep: Up & Running

 

Osoby które kupowały "Tableau Prep: Up & Running", wybierały także:

  • Data Science w Pythonie. Kurs video. Przetwarzanie i analiza danych
  • Excel 2013. Kurs video. Poziom drugi. Przetwarzanie i analiza danych
  • Zarz
  • Eksploracja danych za pomoc
  • Google Analytics od podstaw. Analiza wp

Dodaj do koszyka Tableau Prep: Up & Running

Spis treści

Tableau Prep: Up & Running eBook -- spis treści

  • Preface
    • Why I Wrote This Book
    • Who This Book Is For
    • How This Book Is Organized
    • Acknowledgments
    • Conventions Used in This Book
    • Using Code Examples
    • OReilly Online Learning
    • How to Contact Us
  • 1. Why Self-Service Data Prep?
    • A Short History of Self-Service Data Visualization
    • Accessing the Right Data
    • The Self-Service Data Preparation Opportunity
    • Tableau Prep Up and Running
    • Summary
  • I. Getting Started
  • 2. Getting Started with Tableau Prep Builder
    • Where to Get Tableau Prep Builder
    • How to Get a License for Prep Builder
    • The Tableau Prep Builder Screen
    • Basic Steps of Data Preparation
      • Input Step
      • Clean Step
      • Output Step
      • Saving a Flow
    • Summary
  • 3. Planning Your Prep
    • Stage 1: Know Your Data
    • Stage 2: Identify the Desired State
    • Stage 3: Determine the Required Transitions from KYD to the Desired State
    • Stage 4: Build the Workflow
    • Summary
  • 4. Shaping Data
    • What to Look for in Incoming Data Sets
    • What Shape Is Best for Analysis in Tableau?
    • Changing Data Set Structures in Prep Builder
      • Pivot
      • Aggregate
      • Join
      • Union
    • Applying Restructuring Techniques to the Ice Cream Example
      • Step 1: Pivot Columns to Rows
      • Step 2: Pivot Rows to Columns
    • Summary
  • 5. Connecting to Data in Files
    • Files Upon Files Upon Files
      • Spreadsheets
      • Other File Types
    • Where to Find Your Data Files
    • How to Connect to Files in Prep
    • Considerations for Saving Flows with File Inputs
    • Summary
  • 6. Connecting to a Database
    • What Is a Database?
    • How to Connect to a Database Within Prep Builder
    • When to Avoid Connecting to a Database
    • Summary
  • II. Data Types
  • 7. Dealing with Numbers
    • What Do We Mean by Numbers?
    • Types of Numbers
    • Category or Measure?
    • Aggregation
    • Formatting Numbers
    • Functions for Mastering Numerical Data
    • Summary
  • 8. Dealing with Dates
    • Why Are Dates Important?
    • Parts of a Date
    • Date Lookup Tables
    • Epoch Dates
    • Excel Serial Number
    • Entering Dates
      • The makedate() Function
      • The dateparse() Function
    • Summary
  • 9. Dealing with String Data
    • What Do We Mean by Strings?
    • How String Data Is Different
      • Character Order
      • Formatting Considerations
        • Names
        • Case sensitivity
        • Addresses
        • Spaces
        • Poor or inconsistent spelling
    • Common Functions for Preparing String Data
    • Grouping and Replace Options for Working with String Data
    • Summary
  • 10. Dealing with Boolean Data
    • What Is Boolean Data?
      • Why Is It So Useful in Data Analysis?
      • Functions Featuring Boolean Logic
        • IIF()
        • contains()
        • IsDate()
        • IsNull()
        • IF/THEN
        • CASE
    • Summary
  • III. The Shape of Data
  • 11. Profiling Data
    • What Is a Profile?
    • Why Visualizing the Data Set Is Important
      • Anscombes Quartet
      • Visualizations Versus Data Tables
    • How Prep Builder Profiles Data
      • Generating Histograms and Mini-Histograms
      • Selecting Summary Versus Detail Views
      • Highlighting Values
      • Viewing Dimension Counts
    • Sorting
    • Summary
  • 12. Sampling Data Sets
    • One Simple Rule: Use It All If Possible
    • Sampling to Work Around Technical Limitations
      • Volume of Data
      • Velocity of Data
    • Other Reasons for Sampling
      • Reduce Build Times
      • Determine What You Need
    • Sampling Techniques
      • Fixed Number of Rows
      • Random Sample
    • When Not to Sample
    • Summary
  • 13. Pivoting Columns to Rows
    • When to Pivot in Tableau Prep Builder
    • How to Pivot Columns to Rows
    • Summary
  • 14. Pivoting Rows to Columns
    • When to Use a Rows-to-Columns Pivot
    • How to Pivot Rows to Columns
    • Summary
  • 15. Aggregating in Prep Builder
    • Comparing Calculations in Prep Builder and Desktop
    • Which Calculations in Prep Builder Differ?
    • Adding the Aggregate Step
    • Wheres the Rest of My Data?
    • Level of Detail Calculation Option
    • Summary
  • 16. Joining Data Sets Together
    • How to Join Data Sets in Prep Builder
    • Join Logic and Terminology
    • Types of Join in Prep Builder
    • When to Use Each Join Type
    • Summary
  • 17. Unioning
    • What Is a Union?
    • What If the Data Structure Isnt Identical?
    • When to Union Data
      • Monthly Data Sets
      • Data Sets from Web Sources
      • Company Mergers
    • Multiple Tables and Wildcard Unions
    • Summary
  • 18. Calculations
    • What Do Calculations Do in Data Preparation?
    • Creating a Calculated Field
    • Fundamentals of Calculations
      • The Reference List
      • Syntax
      • Description
      • Example
    • Building the Calculation
      • When Calculations Go Well
      • When Calculations Go Poorly
      • Editing Calculated Fields
      • Recommendations
    • Types of Calculations
      • Numerical Calculations
      • String Calculations
      • Date Calculations
      • Conditional Calculations with a Boolean Output
      • Logical Calculations
      • Type Conversions
    • Level of Detail and Ranking Calculations
    • Summary
  • IV. Output
  • 19. Choosing an Output
    • Types of Output
      • Publish to Files
        • Hyper files
        • TDE files
        • CSV files
      • Publish to Tableau Server
    • When to Output Data in Prep Builder
      • Outputting Data in the Output Step
        • Save to file
        • Publish as a data source
      • Previewing Output Data in Desktop
    • Other Considerations for Output Data
    • Summary
  • 20. Outputting to a Database
    • When to Write to a Database
      • Clean Data
      • Simplified Joins
      • Staging and Reference Tables
    • Setup for Writing to a Database
    • What to Watch Out For
    • Summary
  • 21. Getting Started with Tableau Prep Conductor
    • When to Use Prep Conductor
    • How to Get Prep Conductor
    • Loading a Flow to Prep Conductor
    • Other Benefits of Using Prep Conductor
    • Summary
  • V. Cleaning Data
  • 22. Creating Additional Data
    • When Not to Create Data
      • Dynamic Calculations in Desktop
      • Duplicate Records from Joins
    • Creating Additional Columns
      • Using Calculations
      • Pivoting Rows to Columns
      • Joining Data Sets
    • Creating Additional Rows
      • Pivoting Columns to Rows
      • Unioning Data Sets
      • Scaffolding Data Sets
      • Joining Data Sets
    • Summary
  • 23. Filtering
    • What Is a Filter?
    • Different Types of Filters
      • Selection
        • In the Profile pane
        • In the Data pane
        • From a data field
      • Calculation
      • Wildcard
      • Null Values
    • When to Filter Out Columns
    • When to Filter Out Rows
    • Summary
  • 24. Removing Data During Input
    • Changing Your Data Set Before Loading It
    • Slow Performance, Slow Build, Slow Output
    • Removing Columns
    • Removing Records
    • Summary
  • 25. Splitting Data Fields
    • Basic Splits
    • Advanced Splits: When Automatic Splits Dont Work as Intended
    • When Not to Split Data
      • Address Data
      • No Clear Delimiter
    • Summary
  • 26. Cleaning by Grouping Data
    • What Does Grouping Mean?
    • Why Use Grouping
      • Improving Accuracy
      • Navigating the Data Hierarchy
      • Smoothing Reorganizations
    • Grouping Techniques
      • Manual
      • Calculations
        • IF statements
        • REPLACE() functions
      • Built-in Functionality
    • Summary
  • 27. Dealing with Nulls
    • What Is a Null?
    • When Is a Null OK?
    • How to Remove or Replace a Null
      • ISNULL()
      • ZN()
      • Merge
    • Summary
  • 28. Using Data Roles
    • How to Use Data Roles
    • Custom Data Roles
    • Summary
  • 29. Dealing with Unwanted Characters
    • What Is an Unwanted Character?
    • Issues Caused by Unwanted Characters
    • Removing Unwanted Characters
      • Strings with Mistyped Characters
      • Numbers with Unwanted Characters
      • Dates with Mistyped Characters
    • Summary
  • 30. Deduplicating
    • How to Identify Duplicates
    • Causes of Duplicates
      • System Loads
      • Row per Measure
      • Joins
    • How to Handle Duplicates
      • Aggregating: Technique 1
      • Aggregating: Technique 2
      • Pivoting Rows to Columns
    • Summary
  • 31. Using Regular Expressions
    • What Are Regular Expressions?
    • How to Use Regexes in Prep
    • REGEXP_EXTRACT() and REGEXP_EXTRACT_NTH()
      • REGEXP_MATCH()
      • REGEXP_REPLACE()
    • Regex Use Cases
      • Replacing Common Mistakes
      • Anonymizing Comments or Feedback
    • Common Regex Commands
    • Summary
  • 32. Completing Advanced Joins
    • Multiple Join Conditions
    • Join Conditions Other Than Equals
      • Filtering with a Join
      • Joining by a Range
    • OR Statements
    • Summary
  • 33. Creating Level of Detail Calculations
    • What Is Appending?
    • Exploring Appending Through LOD Calculations
      • When to Use an LOD Calculation
      • How to Write an LOD Calculation in Prep Builder
      • What a Level of Detail Calculation Is Doing
        • Step 1: Calculate the categorical sales
        • Step 2: Join the aggregated results back to the original data set
    • Summary
  • 34. Doing Analytical Calculations
    • What Is a Table Calculation?
    • Applying Table Calculation Logic in Prep Builder
      • Keywords
      • Analytical Calculations
        • The ranking functions
        • The ROW_NUMBER() function
    • Use Cases
      • Filtering for the Top N
      • Filtering Out a Percentage of Data
    • Summary
  • VI. Beyond the Basics
  • 35. Breaking Down Complex Data Preparation Challenges
    • The Challenge
    • Where to Begin
    • Logical Steps
    • Making Changes
    • Be Ready to Iterate
    • Summary
  • 36. Handling Free Text
    • What Is Free Text?
    • Why Is Free Text Useful?
    • How to Analyze Free Text in Tableau
      • Split the Strings
      • Pivot Columns to Rows
      • Clean Cases and Punctuation
      • Use a Join to Remove Common Words
      • Group the Remaining Values
    • Summary
  • 37. Using Smarter Filtering
    • Calculations
      • Boolean Calculations
      • Logical Calculations
      • Regex Calculations
    • Join Ranges
    • Percentage Variance
      • Manual Entry: Level of Detail Calculations
      • Reloaded Data: Join to Previous Output
      • Aggregating the Average Production Cost per Type
      • Joining the Data Sets Together
    • Combining Techniques
    • Summary
  • 38. Managing Conversion Rates
    • Challenges of Conversion Rates
    • Applying Conversion Rates in Prep
      • Step 1: Create a Consistent Granularity of Data for the Conversion
      • Step 2: Join the Data Sets Together
      • Step 3: Apply the Conversion Rate
    • Long-Term Strategies for Conversion Rates
      • Managing Frequency
      • Maintaining History Tables
    • Summary
  • 39. Scaffolding Your Data
    • What Is Scaffolding?
    • Challenges Addressed by Scaffolding
    • Challenges Created by Scaffolding
    • The Traditional Scaffolding Technique
      • Step 1: Input the Data Sets
      • Step 2: Build the Join Calculations
      • Step 3: Join the Two Data Sets Together
      • Step 4: Filter Out Unnecessary Rows
    • The Newer Scaffolding Technique
      • Step 1: Input the Data Sets
      • Step 2: Join the Data Sets
      • Step 3: Add the Reporting Date
      • Step 4: Remove the Scaffold Value
    • The Result
    • Summary
  • 40. Connecting to Programming Scripts
    • When to Use the Script Step in Prep
    • Setting Up Your Computer to Use Scripts in Prep
    • Using a Script Step
    • Summary
  • 41. Handling Prep Builder Errors
    • Parameter Errors
    • Blank Profile Panes or Data Panes
      • Changing a Calculation or Removing a Data Field Downstream
      • The Data Source Has Changed
    • Errors Within a Calculated Field
      • Incomplete Calculations
      • Unsupported Functions
    • Summary
  • VII. Managing Your Data
  • 42. Documenting Your Data Preparation
    • Basic Documentation
      • Folder Structure
      • Filenames
      • Data Sources
      • Output
    • Step Names
    • Clean Step
    • Step Descriptions
    • Color
    • Joins
    • Unions
    • Summary
  • 43. Deciding Where to Prepare Your Data
    • Processes to Consider
    • Data Preparation Versus Visual Analytics
      • Data Literacy
      • Organization Size
      • Quality of Technological Hardware
      • History of Data Investment
    • Software Performance
      • Sampling
      • Functionality
      • Documentation
    • Summary
  • 44. Managing Data
    • What Is Sensitive Data?
      • Public
      • Confidential
      • Strictly Confidential
      • Restricted
    • Managing Data Based on Sensitivity
    • Production Versus Development Environments
    • Deleting Data
      • When Data Becomes Outdated or Irrelevant
      • When a Customer or Client Leaves
    • Summary
  • 45. Storing Your Data
    • Inaccessibility
      • Dont Break the Law
        • Personally identifiable information
        • The right to be forgotten
      • Dont Delete Operational Data
      • Do Grant Access to Data for the Experts
      • Do Document Your Sources
    • Slow/Unresponsive Performance
    • Overwriting Risks
      • Grant Read-Only Access
      • Train Before Publishing
    • So, Where Do You Write That Output?
    • Summary
  • 46. Using Identifiers and Keys in Data
    • What Is an Identifier?
    • What Is a Key in a Database?
    • Using Keys and Identifiers in Prep
    • Creating Identifier Data Fields in Prep Builder
    • Summary
  • 47. Keeping Your Data Up-to-Date
    • Refreshing Data
    • Full Versus Incremental Refreshes
    • Setting Up Different Types of Refresh
      • Full Refresh
      • Incremental Refresh
    • What to Watch Out for When Refreshing Data Sources
      • Changing Data Values
      • Altering the Structure of Sources
      • New Data, New Input
    • Summary
  • 48. Using History Tables
    • Why Are History Tables Required?
    • What to Consider When Creating History Tables
      • Ability to Join to Live Data
      • Relevance of Information
      • Frequency of Updates
      • Level of Granularity
    • Performance
    • Data Regulations
    • An Example History Table
    • Summary
  • 49. Evaluating Whether You Need Prep Builder at All
    • A History of Data Preparation in Tableau
    • Where to Try Desktop First
      • Simple Joins
        • When to move simple joins to Prep
      • Unions
        • When to move unions to Prep
      • Single Pivots
        • When to move single pivots to Prep
    • Where to Start with Prep Builder
    • Summary
  • 50. Final Thoughts
  • Index

Dodaj do koszyka Tableau Prep: Up & Running

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2024 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.