reklama - zainteresowany?

Social Media Mining with R - Helion

Social Media Mining with R
ebook
Autor: Richard Heimann, Nathan H. Danneman
Tytuł oryginału: Social Media Mining with R.
ISBN: 9781783281787
stron: 122, Format: ebook
Data wydania: 2014-03-25
Księgarnia: Helion

Cena książki: 149,00 zł

Dodaj do koszyka Social Media Mining with R

Dodaj do koszyka Social Media Mining with R

 

Osoby które kupowały "Social Media Mining with R", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka Social Media Mining with R

Spis treści

Social Media Mining with R eBook -- spis treści

  • Social Media Mining with R
    • Table of Contents
    • Social Media Mining with R
    • Credits
    • About the Authors
    • About the Reviewers
    • www.PacktPub.com
      • Support files, eBooks, discount offers and more
        • Why Subscribe?
        • Free Access for Packt account holders
    • Preface
      • What this book covers
      • What you need for this book
      • Who this book is for
      • Conventions
      • Reader feedback
      • Customer support
        • Downloading the example code
        • Downloading the color images of this book
        • Errata
        • Piracy
        • Questions
    • 1. Going Viral
      • Social media mining using sentiment analysis
      • The state of communication
      • What is Big Data?
      • Human sensors and honest signals
      • Quantitative approaches
      • Summary
    • 2. Getting Started with R
      • Why R?
      • Quick start
        • The basics assignment and arithmetic
        • Functions, arguments, and help
      • Vectors, sequences, and combining vectors
      • A quick example creating data frames and importing files
      • Visualization in R
      • Style and workflow
      • Additional resources
      • Summary
    • 3. Mining Twitter with R
      • Why Twitter data?
      • Obtaining Twitter data
      • Preliminary analyses
      • Summary
    • 4. Potentials and Pitfalls of Social Media Data
      • Opinion mining made difficult
      • Sentiment and its measurement
      • The nature of social media data
      • Traditional versus nontraditional social data
      • Measurement and inferential challenges
      • Summary
    • 5. Social Media Mining Fundamentals
      • Key concepts of social media mining
      • Good data versus bad data
      • Understanding sentiments
        • Scherers typology of emotions
      • Sentiment polarity data and classification
      • Supervised social media mining lexicon-based sentiment
      • Supervised social media mining Naive Bayes classifiers
      • Unsupervised social media mining Item Response Theory for text scaling
      • Summary
    • 6. Social Media Mining Case Studies
      • Introductory considerations
      • Case study 1 supervised social media mining lexicon-based sentiment
      • Case study 2 Naive Bayes classifier
      • Case study 3 IRT models for unsupervised sentiment scaling
      • Summary
    • A. Conclusions and Next Steps
      • Final thoughts
      • An expanding field
      • Further reading
      • Bibliography
    • Index

Dodaj do koszyka Social Media Mining with R

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.