Social Media Mining with R - Helion
ebook
Autor: Richard Heimann, Nathan H. DannemanTytuł oryginału: Social Media Mining with R.
ISBN: 9781783281787
stron: 122, Format: ebook
Data wydania: 2014-03-25
Księgarnia: Helion
Cena książki: 149,00 zł
Osoby które kupowały "Social Media Mining with R", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Social Media Mining with R eBook -- spis treści
- Social Media Mining with R
- Table of Contents
- Social Media Mining with R
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Support files, eBooks, discount offers and more
- Why Subscribe?
- Free Access for Packt account holders
- Support files, eBooks, discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Downloading the color images of this book
- Errata
- Piracy
- Questions
- 1. Going Viral
- Social media mining using sentiment analysis
- The state of communication
- What is Big Data?
- Human sensors and honest signals
- Quantitative approaches
- Summary
- 2. Getting Started with R
- Why R?
- Quick start
- The basics assignment and arithmetic
- Functions, arguments, and help
- Vectors, sequences, and combining vectors
- A quick example creating data frames and importing files
- Visualization in R
- Style and workflow
- Additional resources
- Summary
- 3. Mining Twitter with R
- Why Twitter data?
- Obtaining Twitter data
- Preliminary analyses
- Summary
- 4. Potentials and Pitfalls of Social Media Data
- Opinion mining made difficult
- Sentiment and its measurement
- The nature of social media data
- Traditional versus nontraditional social data
- Measurement and inferential challenges
- Summary
- 5. Social Media Mining Fundamentals
- Key concepts of social media mining
- Good data versus bad data
- Understanding sentiments
- Scherers typology of emotions
- Sentiment polarity data and classification
- Supervised social media mining lexicon-based sentiment
- Supervised social media mining Naive Bayes classifiers
- Unsupervised social media mining Item Response Theory for text scaling
- Summary
- 6. Social Media Mining Case Studies
- Introductory considerations
- Case study 1 supervised social media mining lexicon-based sentiment
- Case study 2 Naive Bayes classifier
- Case study 3 IRT models for unsupervised sentiment scaling
- Summary
- A. Conclusions and Next Steps
- Final thoughts
- An expanding field
- Further reading
- Bibliography
- Index