reklama - zainteresowany?

R in a Nutshell. 2nd Edition - Helion

R in a Nutshell. 2nd Edition
ebook
Autor: Joseph Adler
ISBN: 978-14-493-5822-8
stron: 724, Format: ebook
Data wydania: 2012-09-26
Księgarnia: Helion

Cena książki: 126,65 zł (poprzednio: 147,27 zł)
Oszczędzasz: 14% (-20,62 zł)

Dodaj do koszyka R in a Nutshell. 2nd Edition

If you’re considering R for statistical computing and data visualization, this book provides a quick and practical guide to just about everything you can do with the open source R language and software environment. You’ll learn how to write R functions and use R packages to help you prepare, visualize, and analyze data. Author Joseph Adler illustrates each process with a wealth of examples from medicine, business, and sports.

Updated for R 2.14 and 2.15, this second edition includes new and expanded chapters on R performance, the ggplot2 data visualization package, and parallel R computing with Hadoop.

  • Get started quickly with an R tutorial and hundreds of examples
  • Explore R syntax, objects, and other language details
  • Find thousands of user-contributed R packages online, including Bioconductor
  • Learn how to use R to prepare data for analysis
  • Visualize your data with R’s graphics, lattice, and ggplot2 packages
  • Use R to calculate statistical fests, fit models, and compute probability distributions
  • Speed up intensive computations by writing parallel R programs for Hadoop
  • Get a complete desktop reference to R

Dodaj do koszyka R in a Nutshell. 2nd Edition

 

Osoby które kupowały "R in a Nutshell. 2nd Edition", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka R in a Nutshell. 2nd Edition

Spis treści

R in a Nutshell. A Desktop Quick Reference. 2nd Edition eBook -- spis treści

  • R in a Nutshell
  • Preface
    • Why I Wrote This Book
    • When Should You Use R?
    • Whats New in the Second Edition?
    • R License Terms
    • Examples
    • How This Book Is Organized
    • Conventions Used in This Book
    • Using Code Examples
    • Safari Books Online
    • How to Contact Us
    • Acknowledgments
  • I. R Basics
    • 1. Getting and Installing R
      • R Versions
      • Getting and Installing Interactive R Binaries
        • Windows
        • Mac OS X
        • Linux and Unix Systems
          • Installation using package management systems
          • Installing R from downloaded files
    • 2. The R User Interface
      • The R Graphical User Interface
        • Windows
        • Mac OS X
        • Linux and Unix
      • The R Console
        • Command-Line Editing
      • Batch Mode
      • Using R Inside Microsoft Excel
      • RStudio
      • Other Ways to Run R
    • 3. A Short R Tutorial
      • Basic Operations in R
      • Functions
      • Variables
      • Introduction to Data Structures
      • Objects and Classes
      • Models and Formulas
      • Charts and Graphics
      • Getting Help
    • 4. R Packages
      • An Overview of Packages
      • Listing Packages in Local Libraries
      • Loading Packages
        • Loading Packages on Windows and Linux
        • Loading Packages on Mac OS X
      • Exploring Package Repositories
        • Exploring R Package Repositories on the Web
        • Finding and Installing Packages Inside R
          • Windows and Linux GUIs
          • Mac OS X GUI
          • R console
          • Installing from the command line
      • Installing Packages From Other Repositories
      • Custom Packages
        • Creating a Package Directory
        • Building the Package
  • II. The R Language
    • 5. An Overview of the R Language
      • Expressions
      • Objects
      • Symbols
      • Functions
      • Objects Are Copied in Assignment Statements
      • Everything in R Is an Object
      • Special Values
        • NA
        • Inf and -Inf
        • NaN
        • NULL
      • Coercion
      • The R Interpreter
      • Seeing How R Works
    • 6. R Syntax
      • Constants
        • Numeric Vectors
        • Character Vectors
        • Symbols
      • Operators
        • Order of Operations
        • Assignments
      • Expressions
        • Separating Expressions
        • Parentheses
        • Curly Braces
      • Control Structures
        • Conditional Statements
        • Loops
      • Accessing Data Structures
        • Data Structure Operators
        • Indexing by Integer Vector
        • Indexing by Logical Vector
        • Indexing by Name
      • R Code Style Standards
    • 7. R Objects
      • Primitive Object Types
      • Vectors
      • Lists
      • Other Objects
        • Matrices
        • Arrays
        • Factors
        • Data Frames
        • Formulas
        • Time Series
        • Shingles
        • Dates and Times
        • Connections
      • Attributes
        • Class
    • 8. Symbols and Environments
      • Symbols
      • Working with Environments
      • The Global Environment
      • Environments and Functions
        • Working with the Call Stack
        • Evaluating Functions in Different Environments
        • Adding Objects to an Environment
      • Exceptions
        • Signaling Errors
        • Catching Errors
    • 9. Functions
      • The Function Keyword
      • Arguments
      • Return Values
      • Functions as Arguments
        • Anonymous Functions
        • Properties of Functions
      • Argument Order and Named Arguments
      • Side Effects
        • Changes to Other Environments
        • Input/Output
        • Graphics
    • 10. Object-Oriented Programming
      • Overview of Object-Oriented Programming in R
        • Key Ideas
        • Implementation Example
      • Object-Oriented Programming in R: S4 Classes
        • Defining Classes
        • New Objects
        • Accessing Slots
        • Working with Objects
        • Creating Coercion Methods
        • Methods
        • Managing Methods
        • Basic Classes
        • More Help
      • Old-School OOP in R: S3
        • S3 Classes
        • S3 Methods
        • Using S3 Classes in S4 Classes
        • Finding Hidden S3 Methods
  • III. Working with Data
    • 11. Saving, Loading, and Editing Data
      • Entering Data Within R
        • Entering Data Using R Commands
        • Using the Edit GUI
          • Windows Data Editor
          • Mac OS X Data Editor
          • X Windows (Linux) Data Editor
      • Saving and Loading R Objects
        • Saving Objects with save
      • Importing Data from External Files
        • Text Files
          • Delimited files
          • Fixed-width files
          • Other functions to parse data
        • Other Software
      • Exporting Data
      • Importing Data From Databases
        • Export Then Import
        • Database Connection Packages
        • RODBC
          • Getting RODBC working
            • Installing the RODBC package
            • Installing ODBC drivers
            • Example: SQLite ODBC on Mac OS X
            • Example: SQLite ODBC on Windows
          • Using RODBC
            • Opening a channel
            • Getting information about the database
            • Getting data
            • Closing a channel
        • DBI
          • Opening a connection
          • Getting DB information
          • Querying the database
          • Cleaning up
        • TSDBI
      • Getting Data from Hadoop
    • 12. Preparing Data
      • Combining Data Sets
        • Pasting Together Data Structures
          • Paste
          • rbind and cbind
          • An extended example
        • Merging Data by Common Fields
      • Transformations
        • Reassigning Variables
        • The Transform Function
        • Applying a Function to Each Element of an Object
          • Applying a function to an array
          • Applying a function to a list or vector
          • the plyr library
      • Binning Data
        • Shingles
        • Cut
        • Combining Objects with a Grouping Variable
      • Subsets
        • Bracket Notation
        • subset Function
        • Random Sampling
      • Summarizing Functions
        • tapply, aggregate
        • Aggregating Tables with rowsum
        • Counting Values
        • Reshaping Data
          • Transposing matrices and data frames
          • Reshaping data frames and matrices
          • Using the Reshape Library
            • Melting and Casting
            • Examples of reshape
            • melt
            • Cast
      • Data Cleaning
      • Finding and Removing Duplicates
      • Sorting
  • IV. Data Visualization
    • 13. Graphics
      • An Overview of R Graphics
        • Scatter Plots
        • Plotting Time Series
        • Bar Charts
        • Pie Charts
        • Plotting Categorical Data
        • Three-Dimensional Data
        • Plotting Distributions
        • Box Plots
      • Graphics Devices
      • Customizing Charts
        • Common Arguments to Chart Functions
        • Graphical Parameters
          • Annotation
          • Margins
          • Multiple plots
          • Text properties
            • Text size
            • Typeface
            • Alignment and spacing
            • Rotation
          • Line properties
          • Colors
          • Axes
          • Points
          • Graphical parameters by name
        • Basic Graphics Functions
          • points
          • lines
          • curve
          • text
          • abline
          • polygon
          • segments
          • legend
          • title
          • axis
          • box
          • mtext
          • trans3d
    • 14. Lattice Graphics
      • History
      • An Overview of the Lattice Package
        • How Lattice Works
        • A Simple Example
        • Using Lattice Functions
        • Custom Panel Functions
      • High-Level Lattice Plotting Functions
        • Univariate Trellis Plots
          • Bar charts
          • Dot plots
          • Histograms
          • Density plots
          • Strip plots
          • Univariate quantile-quantile plots
        • Bivariate Trellis Plots
          • Scatter plots
          • Box plots in lattice
          • Scatter plots matrices
          • Bivariate quantile-quantile plots
        • Trivariate Plots
          • Level plots
          • Contour plots
          • Cloud plots
          • Wire-frame plots
        • Other Plots
      • Customizing Lattice Graphics
        • Common Arguments to Lattice Functions
        • trellis.skeleton
        • Controlling How Axes Are Drawn
        • Parameters
        • plot.trellis
        • strip.default
        • simpleKey
      • Low-Level Functions
        • Low-Level Graphics Functions
        • Panel Functions
    • 15. ggplot2
      • A Short Introduction
      • The Grammar of Graphics
      • A More Complex Example: Medicare Data
      • Quick Plot
      • Creating Graphics with ggplot2
      • Learning More
  • V. Statistics with R
    • 16. Analyzing Data
      • Summary Statistics
      • Correlation and Covariance
      • Principal Components Analysis
      • Factor Analysis
      • Bootstrap Resampling
    • 17. Probability Distributions
      • Normal Distribution
      • Common Distribution-Type Arguments
      • Distribution Function Families
    • 18. Statistical Tests
      • Continuous Data
        • Normal Distribution-Based Tests
          • Comparing means
          • Comparing paired data
          • Comparing variances of two populations
          • Comparing means across more than two groups
          • Pairwise t-tests between multiple groups
          • Testing for normality
          • Testing if a data vector came from an arbitrary distribution
          • Testing if two data vectors came from the same distribution
          • Correlation tests
        • Non-Parametric Tests
          • Comparing two means
          • Comparing more than two means
          • Comparing variances
          • Difference in scale parameters
      • Discrete Data
        • Proportion Tests
        • Binomial Tests
        • Tabular Data Tests
        • Non-Parametric Tabular Data Tests
    • 19. Power Tests
      • Experimental Design Example
      • t-Test Design
      • Proportion Test Design
      • ANOVA Test Design
    • 20. Regression Models
      • Example: A Simple Linear Model
        • Fitting a Model
        • Helper Functions for Specifying the Model
        • Getting Information About a Model
          • Viewing the model
          • Predicting values using a model
          • Analyzing the fit
        • Refining the Model
      • Details About the lm Function
        • Assumptions of Least Squares Regression
        • Robust and Resistant Regression
          • Resistant regression
          • Robust regression
          • Comparing lm, lqs, and rlm
      • Subset Selection and Shrinkage Methods
        • Stepwise Variable Selection
        • Ridge Regression
        • Lasso and Least Angle Regression
        • elasticnet
        • Principal Components Regression and Partial Least Squares Regression
      • Nonlinear Models
        • Generalized Linear Models
        • glmnet
        • Nonlinear Least Squares
      • Survival Models
      • Smoothing
        • Splines
        • Fitting Polynomial Surfaces
        • Kernel Smoothing
      • Machine Learning Algorithms for Regression
        • Regression Tree Models
          • Recursive partitioning trees
          • Patient rule induction method
          • Bagging for regression
          • Boosting for regression
          • Random forests for regression
        • MARS
        • Neural Networks
        • Project Pursuit Regression
        • Generalized Additive Models
        • Support Vector Machines
    • 21. Classification Models
      • Linear Classification Models
        • Logistic Regression
        • Linear Discriminant Analysis
        • Log-Linear Models
      • Machine Learning Algorithms for Classification
        • k Nearest Neighbors
        • Classification Tree Models
          • Bagging
          • Boosting
        • Neural Networks
        • SVMs
        • Random Forests
    • 22. Machine Learning
      • Market Basket Analysis
      • Clustering
        • Distance Measures
        • Clustering Algorithms
    • 23. Time Series Analysis
      • Autocorrelation Functions
      • Time Series Models
  • VI. Additional Topics
    • 24. Optimizing R Programs
      • Measuring R Program Performance
        • Timing
        • Profiling
        • Monitor How Much Memory You Are Using
        • Profiling Memory Usage
      • Optimizing Your R Code
        • Using Vector Operations
          • Iterative algorithms and vector operations
          • Transforming problems to use built-in functions
        • Lookup Performance in R
          • Lookups and R objects
          • Using environment objects in place of vectors
        • Use a Database to Query Large Data Sets
        • Preallocate Memory
        • Cleaning Up Memory
        • Functions for Big Data Sets
      • Other Ways to Speed Up R
        • The R Byte Code Compiler
          • Manual compilation
          • Inspecting byte code
          • Just-in-time compilation
        • High-Performance R Binaries
          • Revolution R
          • Building your own
            • Building on Microsoft Windows
            • Building R on Unix-like systems
            • Building R on Mac OS X
    • 25. Bioconductor
      • An Example
        • Loading Raw Expression Data
        • Loading Data from GEO
        • Matching Phenotype Data
        • Analyzing Expression Data
      • Key Bioconductor Packages
      • Data Structures
        • eSet
        • AssayData
        • AnnotatedDataFrame
        • MIAME
        • Other Classes Used by Bioconductor Packages
      • Where to Go Next
        • Resources Outside Bioconductor
        • Vignettes
        • Courses
        • Books
    • 26. R and Hadoop
      • R and Hadoop
        • Overview of Hadoop
          • Map/Reduce
          • Distributed data storage
          • Managing a cluster of servers
          • Java framework
          • When should you consider Hadoop?
        • RHadoop
          • Make sure Hadoop is installed locally
          • Installing RHadoop locally
          • An example RHadoop application
          • Details of rmr
          • Learning more
        • Hadoop Streaming
        • Learning More
      • Other Packages for Parallel Computation with R
        • Segue
        • doMC
      • Where to Learn More
  • A. R Reference
    • base
      • Functions
      • Data Sets
    • boot
      • Functions
      • Data Sets
    • class
      • Functions
    • cluster
      • Functions
      • Data Sets
    • codetools
    • foreign
      • Functions
    • grDevices
      • Functions
      • Data Sets
    • graphics
      • Functions
    • grid
    • KernSmooth
      • Functions
    • lattice
      • Functions
      • Data Sets
    • MASS
      • Functions
      • Data Sets
    • methods
      • Functions
    • mgcv
    • nlme
    • nnet
      • Functions
    • rpart
      • Functions
      • Data Sets
    • spatial
      • Functions
    • splines
      • Functions
    • stats
      • Functions
      • Data Set
    • stats4
      • Functions
    • survival
      • Functions
      • Data Sets
    • tcltk
    • tools
      • Functions
      • Data Sets
    • utils
      • Functions
  • Bibliography
  • Index
  • About the Author
  • Colophon
  • Copyright

Dodaj do koszyka R in a Nutshell. 2nd Edition

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.