R Bioinformatics Cookbook - Helion
Tytuł oryginału: R Bioinformatics Cookbook
ISBN: 9781789955590
stron: 307, Format: ebook
Data wydania: 2019-10-11
Księgarnia: Helion
Cena książki: 125,10 zł (poprzednio: 139,00 zł)
Oszczędzasz: 10% (-13,90 zł)
Over 60 recipes to model and handle real-life biological data using modern libraries from the R ecosystem
Key Features
- Apply modern R packages to handle biological data using real-world examples
- Represent biological data with advanced visualizations suitable for research and publications
- Handle real-world problems in bioinformatics such as next-generation sequencing, metagenomics, and automating analyses
Book Description
Handling biological data effectively requires an in-depth knowledge of machine learning techniques and computational skills, along with an understanding of how to use tools such as edgeR and DESeq. With the R Bioinformatics Cookbook, you'll explore all this and more, tackling common and not-so-common challenges in the bioinformatics domain using real-world examples.
This book will use a recipe-based approach to show you how to perform practical research and analysis in computational biology with R. You will learn how to effectively analyze your data with the latest tools in Bioconductor, ggplot, and tidyverse. The book will guide you through the essential tools in Bioconductor to help you understand and carry out protocols in RNAseq, phylogenetics, genomics, and sequence analysis. As you progress, you will get up to speed with how machine learning techniques can be used in the bioinformatics domain. You will gradually develop key computational skills such as creating reusable workflows in R Markdown and packages for code reuse.
By the end of this book, you'll have gained a solid understanding of the most important and widely used techniques in bioinformatic analysis and the tools you need to work with real biological data.
What you will learn
- Employ Bioconductor to determine differential expressions in RNAseq data
- Run SAMtools and develop pipelines to find single nucleotide polymorphisms (SNPs) and Indels
- Use ggplot to create and annotate a range of visualizations
- Query external databases with Ensembl to find functional genomics information
- Execute large-scale multiple sequence alignment with DECIPHER to perform comparative genomics
- Use d3.js and Plotly to create dynamic and interactive web graphics
- Use k-nearest neighbors, support vector machines and random forests to find groups and classify data
Who this book is for
This book is for bioinformaticians, data analysts, researchers, and R developers who want to address intermediate-to-advanced biological and bioinformatics problems by learning through a recipe-based approach. Working knowledge of R programming language and basic knowledge of bioinformatics are prerequisites.
Osoby które kupowały "R Bioinformatics Cookbook", wybierały także:
- R i pakiet shiny. Kurs video. Interaktywne aplikacje w analizie danych 148,98 zł, (59,59 zł -60%)
- Apache NiFi. Kurs video. Automatyzacja przep 148,98 zł, (59,59 zł -60%)
- Analiza danych w Tableau. Kurs video. Podstawy pracy analityka 248,98 zł, (99,59 zł -60%)
- Web scraping. Kurs video. Zautomatyzowane pozyskiwanie danych z sieci 139,00 zł, (55,60 zł -60%)
- Data Science w Pythonie. Kurs video. Algorytmy uczenia maszynowego 198,98 zł, (79,59 zł -60%)
Spis treści
R Bioinformatics Cookbook. Use R and Bioconductor to perform RNAseq, genomics, data visualization, and bioinformatic analysis eBook -- spis treści
- 1. Performing Quantitative RNAseq
- 2. Finding Genetic Variants With Next-Generation Sequence Data
- 3. Analyzing Gene and Protein Sequence For Domains and Motifs
- 4. Phylogenetic Analysis and Visualisation
- 5. Metagenomics
- 6. Proteomics from Spectrum to Annotation
- 7. Producing Publication and Web-Ready Visualizations
- 8. Working with Databases and Remote Data Sources
- 9. Useful Statistical and Machine Learning Methods in Bioinformatics
- 10. Programming and Analysis with Tidyverse
- 11. Building reusable workflows with packages and objects for code re-use