Practical Data Analysis. Pandas, MongoDB, Apache Spark, and more - Second Edition - Helion
Tytuł oryginału: Practical Data Analysis. Pandas, MongoDB, Apache Spark, and more - Second Edition
ISBN: 9781785286667
stron: 338, Format: ebook
Data wydania: 2016-09-30
Księgarnia: Helion
Cena książki: 159,00 zł
Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service.
This book explains the basic data algorithms without the theoretical jargon, and you’ll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark.
Osoby które kupowały "Practical Data Analysis. Pandas, MongoDB, Apache Spark, and more - Second Edition", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Practical Data Analysis. Pandas, MongoDB, Apache Spark, and more - Second Edition eBook -- spis treści
- 1. Getting Started with Data Analysis
- 2. Preprocessing the Data
- 3. Getting to Grips with Visualization
- 4. Text Classification
- 5. Similarity-based Image Retrieval
- 6. Simulation of Stock Prices
- 7. Predicting Gold Prices
- 8. Working with Support Vector Machines
- 9. Modeling Infectious Disease with Cellular Automata
- 10. Visualizing Social Network Graphs
- 11. Sentiment Analysis of Twitter Data
- 12. Data Processing and Aggregation with MongoDB
- 13. Working with MapReduce
- 14. On-line Data Analysis with Jupyter and Wakari
- 15. Big Data Using Spark