reklama - zainteresowany?

Optimizing Databricks Workloads - Helion

Optimizing Databricks Workloads
ebook
Autor: Anirudh Kala, Anshul Bhatnagar, Sarthak Sarbahi
Tytuł oryginału: Optimizing Databricks Workloads
ISBN: 9781801811927
stron: 230, Format: ebook
Data wydania: 2021-12-24
Księgarnia: Helion

Cena książki: 119,00 zł

Dodaj do koszyka Optimizing Databricks Workloads

Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud.

In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains.

By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently.

Dodaj do koszyka Optimizing Databricks Workloads

 

Osoby które kupowały "Optimizing Databricks Workloads", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka Optimizing Databricks Workloads

Spis treści

Optimizing Databricks Workloads. Harness the power of Apache Spark in Azure and maximize the performance of modern big data workloads eBook -- spis treści

  • 1. Discovering Databricks
  • 2. Batch and Real-Time Processing in Databricks
  • 3. Learning about Machine Learning and Graph Processing in Databricks
  • 4. Managing Spark Clusters
  • 5. Big Data Analytics
  • 6. Databricks Delta Lake
  • 7. Spark Core
  • 8. Case Studies

Dodaj do koszyka Optimizing Databricks Workloads

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.