Optimizing Databricks Workloads - Helion
Tytuł oryginału: Optimizing Databricks Workloads
ISBN: 9781801811927
stron: 230, Format: ebook
Data wydania: 2021-12-24
Księgarnia: Helion
Cena książki: 119,00 zł
Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud.
In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains.
By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently.
Osoby które kupowały "Optimizing Databricks Workloads", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Optimizing Databricks Workloads. Harness the power of Apache Spark in Azure and maximize the performance of modern big data workloads eBook -- spis treści
- 1. Discovering Databricks
- 2. Batch and Real-Time Processing in Databricks
- 3. Learning about Machine Learning and Graph Processing in Databricks
- 4. Managing Spark Clusters
- 5. Big Data Analytics
- 6. Databricks Delta Lake
- 7. Spark Core
- 8. Case Studies