NumPy Essentials. Click here to enter text - Helion
Tytuł oryginału: NumPy Essentials. Click here to enter text.
ISBN: 9781784392185
stron: 156, Format: ebook
Data wydania: 2016-04-28
Księgarnia: Helion
Cena książki: 94,99 zł
In today’s world of science and technology, it’s all about speed and flexibility. When it comes to scientific computing, NumPy tops the list. NumPy gives you both the speed and high productivity you need.
This book will walk you through NumPy using clear, step-by-step examples and just the right amount of theory. We will guide you through wider applications of NumPy in scientific computing and will then focus on the fundamentals of NumPy, including array objects, functions, and matrices, each of them explained with practical examples.
You will then learn about different NumPy modules while performing mathematical operations such as calculating the Fourier Transform; solving linear systems of equations, interpolation, extrapolation, regression, and curve fitting; and evaluating integrals and derivatives. We will also introduce you to using Cython with NumPy arrays and writing extension modules for NumPy code using the C API. This book will give you exposure to the vast NumPy library and help you build efficient, high-speed programs using a wide range of mathematical features.
Osoby które kupowały "NumPy Essentials. Click here to enter text", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
NumPy Essentials. Click here to enter text eBook -- spis treści
- 1. Introduction to NumPy
- 2. The numpy.ndarray object
- 3. Using NumPy arrays
- 4. The numpy core and lib submodules
- 5. Linear Algebra in NumPy
- 6. Fourier Analysis in NumPy
- 7. Building and distributing NumPy Code
- 8. Speeding up NumPy with Cython
- 9. Introduction to the NumPy C API
- 10. Further reading