reklama - zainteresowany?

Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python - Helion

Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python
ebook
Autor: Ankur Ankan
Tytuł oryginału: Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python
ISBN: 9781784395216
stron: 284, Format: ebook
Data wydania: 2015-08-03
Księgarnia: Helion

Cena książki: 139,00 zł

Dodaj do koszyka Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

Dodaj do koszyka Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

 

Osoby które kupowały "Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

Spis treści

Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python eBook -- spis treści

  • 1. Bayesian Network Fundamentals
  • 2. Markov Network Fundamentals
  • 3. Inference: Asking Questions to Models
  • 4. Approximate Inference Methods: Sampling
  • 5. Model Learning: Parameter Estimation in Bayesian Networks
  • 6. Model Learning: Parameter Estimation in Markov Networks
  • 7. Specialized Models

Dodaj do koszyka Mastering Probabilistic Graphical Models Using Python. Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.