F# for Machine Learning Essentials. Get up and running with machine learning with F# in a fun and functional way - Helion
Tytuł oryginału: F# for Machine Learning Essentials. Get up and running with machine learning with F# in a fun and functional way
ISBN: 9781783989355
stron: 194, Format: ebook
Data wydania: 2016-02-25
Księgarnia: Helion
Cena książki: 107,10 zł (poprzednio: 119,00 zł)
Oszczędzasz: 10% (-11,90 zł)
The F# functional programming language enables developers to write simple code to solve complex problems. With F#, developers create consistent and predictable programs that are easier to test and reuse, simpler to parallelize, and are less prone to bugs.
If you want to learn how to use F# to build machine learning systems, then this is the book you want.
Starting with an introduction to the several categories on machine learning, you will quickly learn to implement time-tested, supervised learning algorithms. You will gradually move on to solving problems on predicting housing pricing using Regression Analysis. You will then learn to use Accord.NET to implement SVM techniques and clustering. You will also learn to build a recommender system for your e-commerce site from scratch. Finally, you will dive into advanced topics such as implementing neural network algorithms while performing sentiment analysis on your data.
Osoby które kupowały "F# for Machine Learning Essentials. Get up and running with machine learning with F# in a fun and functional way", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
F# for Machine Learning Essentials. Get up and running with machine learning with F# in a fun and functional way eBook -- spis treści
- 1. Introduction to ML
- 2. Predicting Real Numbers using Linear Regression
- 3. Classification Techniques
- 4. Information Retrieval
- 5. Recommendation Systems
- 6. Sentiment Analysis
- 7. Anomaly Detection