reklama - zainteresowany?

Developing Apps with GPT-4 and ChatGPT - Helion

Developing Apps with GPT-4 and ChatGPT
ebook
Autor: Olivier Caelen, Marie-Alice Blete
ISBN: 9781098152444
stron: 160, Format: ebook
Data wydania: 2023-08-29
Księgarnia: Helion

Cena książki: 219,00 zł

Dodaj do koszyka Developing Apps with GPT-4 and ChatGPT

This minibook is a comprehensive guide for Python developers who want to learn how to build applications with large language models. Authors Olivier Caelen and Marie-Alice Blete cover the main features and benefits of GPT-4 and ChatGPT and explain how they work. You'll also get a step-by-step guide for developing applications using the GPT-4 and ChatGPT Python library, including text generation, Q&A, and content summarization tools.

Written in clear and concise language, Developing Apps with GPT-4 and ChatGPT includes easy-to-follow examples to help you understand and apply the concepts to your projects. Python code examples are available in a GitHub repository, and the book includes a glossary of key terms. Ready to harness the power of large language models in your applications? This book is a must.

You'll learn:

  • The fundamentals and benefits of ChatGPT and GPT-4 and how they work
  • How to integrate these models into Python-based applications for NLP tasks
  • How to develop applications using GPT-4 or ChatGPT APIs in Python for text generation, question answering, and content summarization, among other tasks
  • Advanced GPT topics including prompt engineering, fine-tuning models for specific tasks, plug-ins, LangChain, and more

Dodaj do koszyka Developing Apps with GPT-4 and ChatGPT

 

Osoby które kupowały "Developing Apps with GPT-4 and ChatGPT", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka Developing Apps with GPT-4 and ChatGPT

Spis treści

Developing Apps with GPT-4 and ChatGPT eBook -- spis treści

  • Preface
    • Conventions Used in This Book
    • Using Code Examples
    • OReilly Online Learning
    • How to Contact Us
    • Acknowledgments
  • 1. GPT-4 and ChatGPT Essentials
    • Introducing Large Language Models
      • Exploring the Foundations of Language Models and NLP
      • Understanding the Transformer Architecture and Its Role in LLMs
      • Demystifying the Tokenization and Prediction Steps in GPT Models
    • A Brief History: From GPT-1 to GPT-4
      • GPT-1
      • GPT-2
      • GPT-3
      • From GPT-3 to InstructGPT
      • GPT-3.5, Codex, and ChatGPT
        • GPT-4
    • LLM Use Cases and Example Products
      • Be My Eyes
      • Morgan Stanley
      • Khan Academy
      • Duolingo
      • Yabble
      • Waymark
      • Inworld AI
    • Beware of AI Hallucinations: Limitations and Considerations
    • Optimizing GPT Models with Plug-ins and Fine-Tuning
    • Summary
  • 2. A Deep Dive into the GPT-4 and ChatGPT APIs
    • Essential Concepts
    • Models Available in the OpenAI API
    • Trying GPT Models with the OpenAI Playground
    • Getting Started: The OpenAI Python Library
      • OpenAI Access and API Key
      • Hello World Example
    • Using ChatGPT and GPT-4
      • Input Options for the Chat Completion Endpoint
        • Required input parameters
        • Length of conversations and tokens
        • Additional optional parameters
      • Output Result Format for the Chat Completion Endpoint
      • From Text Completions to Functions
    • Using Other Text Completion Models
      • Input Options for the Text Completion Endpoint
        • Main input parameters
        • Length of prompts and tokens
        • Additional optional parameters
      • Output Result Format for the Text Completion Endpoint
    • Considerations
      • Pricing and Token Limitations
      • Security and Privacy: Caution!
    • Other OpenAI APIs and Functionalities
      • Embeddings
      • Moderation Model
      • Whisper and DALL-E
    • Summary (and Cheat Sheet)
  • 3. Building Apps with GPT-4 and ChatGPT
    • App Development Overview
      • API Key Management
        • The user provides the API key
        • You provide the API key
      • Security and Data Privacy
    • Software Architecture Design Principles
    • LLM-Powered App Vulnerabilities
      • Analyzing Inputs and Outputs
      • The Inevitability of Prompt Injection
    • Example Projects
      • Project 1: Building a News Generator Solution
      • Project 2: Summarizing YouTube Videos
      • Project 3: Creating an Expert for Zelda BOTW
        • Redis
        • Information retrieval service
        • Intent service
        • Response service
        • Putting it all together
      • Project 4: Voice Control
        • Speech-to-Text with Whisper
        • Assistant with GPT-3.5 Turbo
        • UI with Gradio
        • Demonstration
    • Summary
  • 4. Advanced GPT-4 and ChatGPT Techniques
    • Prompt Engineering
      • Designing Effective Prompts
        • The context
        • The task
        • The role
      • Thinking Step by Step
      • Implementing Few-Shot Learning
      • Improving Prompt Effectiveness
        • Instruct the model to ask more questions
        • Format the output
        • Repeat the instructions
        • Use negative prompts
        • Add length constraints
    • Fine-Tuning
      • Getting Started
        • Adapting GPT base models for domain-specific needs
        • Fine-tuning versus few-shot learning
      • Fine-Tuning with the OpenAI API
        • Preparing your data
        • Making your data available
        • Creating a fine-tuned model
        • Listing fine-tuning jobs
        • Canceling a fine-tuning job
      • Fine-Tuning Applications
        • Legal document analysis
        • Automated code review
        • Financial document summarization
        • Technical document translation
        • News article generation for niche topics
      • Generating and Fine-Tuning Synthetic Data for an Email Marketing Campaign
        • Creating a synthetic dataset
        • Fine-tuning a model with the synthetic dataset
        • Using the fine-tuned model for text completion
      • Cost of Fine-Tuning
    • Summary
  • 5. Advancing LLM Capabilities with the LangChain Framework and Plug-ins
    • The LangChain Framework
      • Dynamic Prompts
      • Agents and Tools
      • Memory
      • Embeddings
    • GPT-4 Plug-ins
      • Overview
      • The API
      • The Plug-in Manifest
      • The OpenAPI Specification
      • Descriptions
    • Summary
    • Conclusion
  • Glossary of Key Terms
  • Index

Dodaj do koszyka Developing Apps with GPT-4 and ChatGPT

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.