Azure Machine Learning Engineering - Helion
Tytuł oryginału: Azure Machine Learning Engineering
ISBN: 9781803241685
stron: 362, Format: ebook
Data wydania: 2023-01-20
Księgarnia: Helion
Cena książki: 107,10 zł (poprzednio: 119,00 zł)
Oszczędzasz: 10% (-11,90 zł)
Data scientists working on productionizing machine learning (ML) workloads face a breadth of challenges at every step owing to the countless factors involved in getting ML models deployed and running. This book offers solutions to common issues, detailed explanations of essential concepts, and step-by-step instructions to productionize ML workloads using the Azure Machine Learning service. You’ll see how data scientists and ML engineers working with Microsoft Azure can train and deploy ML models at scale by putting their knowledge to work with this practical guide.
Throughout the book, you’ll learn how to train, register, and productionize ML models by making use of the power of the Azure Machine Learning service. You’ll get to grips with scoring models in real time and batch, explaining models to earn business trust, mitigating model bias, and developing solutions using an MLOps framework.
By the end of this Azure Machine Learning book, you’ll be ready to build and deploy end-to-end ML solutions into a production system using the Azure Machine Learning service for real-time scenarios.
Osoby które kupowały "Azure Machine Learning Engineering", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Azure Machine Learning Engineering. Deploy, fine-tune, and optimize ML models using Microsoft Azure eBook -- spis treści
- 1. Introducing Azure Machine Learning
- 2. Working with Data in AMLS
- 3. Training Machine Learning Models in AMLS
- 4. Tuning Your Models with AMLS
- 5. Azure Automated Machine Learning
- 6. Deploying ML Models for Real-Time Inferencing
- 7. Deploying ML Models for Batch Scoring
- 8. Responsible AI
- 9. Productionizing Your Workload with MLOps
- 10. Using Deep Learning in Azure Machine Learning
- 11. Using Distributed Training in AMLS