reklama - zainteresowany?

A Practical Approach to Timeseries Forecasting Using Python. Learn Time Series Forecasting Using Machine Learning, Recursive Neural Networks, and Python - Helion

A Practical Approach to Timeseries Forecasting Using Python. Learn Time Series Forecasting Using Machine Learning, Recursive Neural Networks, and Python
video
Autor: AI Sciences
Tytuł oryginału: A Practical Approach to Timeseries Forecasting Using Python. Learn Time Series Forecasting Using Machine Learning, Recursive Neural Networks, and Python
ISBN: 9781837632510
Format: video
Data wydania: 2023-03-13
Księgarnia: Helion

Cena książki: 459,00 zł

Dodaj do koszyka A Practical Approach to Timeseries Forecasting Using Python. Learn Time Series Forecasting Using Machine Learning, Recursive Neural Networks, and Python

Have you ever wondered how weather predictions, population estimates, and even the lifespan of the universe are made?

Discover the power of time series forecasting with state-of-the-art ML and DL models.

The course begins with the fundamentals of time series analysis, including its characteristics, applications in real-world scenarios, and practical examples. Then progress to exploring data analysis and visualization techniques for time series data, ranging from basic to advanced levels, using powerful libraries such as NumPy, Pandas, and Matplotlib. Python will be utilized to assess various aspects of your time series data, such as seasonality, trend, noise, autocorrelation, mean over time, correlation, and stationarity.

Additionally, you will learn how to pre-process time series data for utilization in applied machine learning and recurrent neural network models, which will enable you to train, test, and assess your forecasted results. Finally, you will acquire an understanding of the applied ML models, including their performance evaluations and comparisons.

In the RNNs module, you will be building GRU, LSTM, Stacked LSTM, BiLSTM, and Stacked BiLSTM models.

By the end of this course, you will be able to understand time series forecasting and its parameters, evaluate the ML models, and evaluate the model and implement RNN models for time series forecasting.

All the resource files are added to the GitHub repository at: https://github.com/PacktPublishing/A-Practical-Approach-to-Timeseries-Forecasting-using-Python

Dodaj do koszyka A Practical Approach to Timeseries Forecasting Using Python. Learn Time Series Forecasting Using Machine Learning, Recursive Neural Networks, and Python

 

Osoby które kupowały "A Practical Approach to Timeseries Forecasting Using Python. Learn Time Series Forecasting Using Machine Learning, Recursive Neural Networks, and Python", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka A Practical Approach to Timeseries Forecasting Using Python. Learn Time Series Forecasting Using Machine Learning, Recursive Neural Networks, and Python

Spis treści

[ERROR]

Dodaj do koszyka A Practical Approach to Timeseries Forecasting Using Python. Learn Time Series Forecasting Using Machine Learning, Recursive Neural Networks, and Python

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.