reklama - zainteresowany?

Spring Data - Helion

Spring Data
ebook
Autor: Mark Pollack, Oliver Gierke, Thomas Risberg
ISBN: 978-14-493-3188-7
stron: 316, Format: ebook
Data wydania: 2012-10-12
Księgarnia: Helion

Cena książki: 126,65 zł (poprzednio: 147,27 zł)
Oszczędzasz: 14% (-20,62 zł)

Dodaj do koszyka Spring Data

Tagi: Java - Programowanie

You can choose several data access frameworks when building Java enterprise applications that work with relational databases. But what about big data? This hands-on introduction shows you how Spring Data makes it relatively easy to build applications across a wide range of new data access technologies such as NoSQL and Hadoop.

Through several sample projects, you’ll learn how Spring Data provides a consistent programming model that retains NoSQL-specific features and capabilities, and helps you develop Hadoop applications across a wide range of use-cases such as data analysis, event stream processing, and workflow. You’ll also discover the features Spring Data adds to Spring’s existing JPA and JDBC support for writing RDBMS-based data access layers.

  • Learn about Spring’s template helper classes to simplify the use ofdatabase-specific functionality
  • Explore Spring Data’s repository abstraction and advanced query functionality
  • Use Spring Data with Redis (key/value store), HBase(column-family), MongoDB (document database), and Neo4j (graph database)
  • Discover the GemFire distributed data grid solution
  • Export Spring Data JPA-managed entities to the Web as RESTful web services
  • Simplify the development of HBase applications, using a lightweight object-mapping framework
  • Build example big-data pipelines with Spring Batch and Spring Integration

Dodaj do koszyka Spring Data

Spis treści

Spring Data eBook -- spis treści

  • Spring Data
  • Dedication
  • Dedication
  • SPECIAL OFFER: Upgrade this ebook with OReilly
  • Foreword
  • Preface
    • Overview of the New Data Access Landscape
    • How to Read This Book
    • Conventions Used in This Book
    • Using Code Examples
    • Safari Books Online
    • How to Contact Us
    • Acknowledgments
  • I. Background
    • 1. The Spring Data Project
      • NoSQL Data Access for Spring Developers
      • General Themes
      • The Domain
      • The Sample Code
        • Importing the Source Code into Your IDE
          • STS/Eclipse
          • IntelliJ IDEA
    • 2. Repositories: Convenient Data Access Layers
      • Quick Start
      • Defining Query Methods
        • Query Lookup Strategies
        • Query Derivation
          • Property expressions
        • Pagination and Sorting
      • Defining Repositories
        • Fine-Tuning Repository Interfaces
        • Manually Implementing Repository Methods
      • IDE Integration
        • IntelliJ IDEA
    • 3. Type-Safe Querying Using Querydsl
      • Introduction to Querydsl
      • Generating the Query Metamodel
        • Build System Integration
        • Supported Annotation Processors
        • Querying Stores Using Querydsl
      • Integration with Spring Data Repositories
        • Executing Predicates
        • Manually Implementing Repositories
  • II. Relational Databases
    • 4. JPA Repositories
      • The Sample Project
      • The Traditional Approach
      • Bootstrapping the Sample Code
      • Using Spring Data Repositories
        • Transactionality
        • Repository Querydsl Integration
    • 5. Type-Safe JDBC Programming with Querydsl SQL
      • The Sample Project and Setup
        • The HyperSQL Database
        • The SQL Module of Querydsl
        • Build System Integration
        • The Database Schema
        • The Domain Implementation of the Sample Project
      • The QueryDslJdbcTemplate
      • Executing Queries
        • The Beginning of the Repository Implementation
        • Querying for a Single Object
        • The OneToManyResultSetExtractor Abstract Class
        • The CustomerListExtractor Implementation
        • The Implementations for the RowMappers
        • Querying for a List of Objects
      • Insert, Update, and Delete Operations
        • Inserting with the SQLInsertClause
        • Updating with the SQLUpdateClause
        • Deleting Rows with the SQLDeleteClause
  • III. NoSQL
    • 6. MongoDB: A Document Store
      • MongoDB in a Nutshell
        • Setting Up MongoDB
        • Using the MongoDB Shell
        • The MongoDB Java Driver
      • Setting Up the Infrastructure Using the Spring Namespace
      • The Mapping Subsystem
        • The Domain Model
          • Addresses and email addresses
          • Customers
          • Products
          • Orders and line items
        • Setting Up the Mapping Infrastructure
          • Using the Spring namespace
          • In Spring JavaConfig
        • Indexing
        • Customizing Conversion
          • Implementing custom converters
          • Registering custom converters
      • MongoTemplate
      • Mongo Repositories
        • Infrastructure Setup
        • Repositories in Detail
        • Mongo Querydsl Integration
    • 7. Neo4j: A Graph Database
      • Graph Databases
      • Neo4j
      • Spring Data Neo4j Overview
      • Modeling the Domain as a Graph
      • Persisting Domain Objects with Spring Data Neo4j
        • Neo4jTemplate
      • Combining Graph and Repository Power
        • Basic Graph Repository Operations
        • Derived and Annotated Finder Methods
          • Annotated finder methods
          • Result handling
          • Derived finder methods
      • Advanced Graph Use Cases in the Example Domain
        • Multiple Roles for a Single Node
        • Product Categories and Tags as Examples for In-Graph Indexes
        • Leverage Similar Interests (Collaborative Filtering)
        • Recommendations
      • Transactions, Entity Life Cycle, and Fetch Strategies
      • Advanced Mapping Mode
      • Working with Neo4j Server
      • Continuing From Here
    • 8. Redis: A Key/Value Store
      • Redis in a Nutshell
        • Setting Up Redis
        • Using the Redis Shell
      • Connecting to Redis
      • Object Conversion
      • Object Mapping
      • Atomic Counters
      • Pub/Sub Functionality
        • Listening and Responding to Messages
      • Using Springs Cache Abstraction with Redis
  • IV. Rapid Application Development
    • 9. Persistence Layers with Spring Roo
      • A Brief Introduction to Roo
      • Roos Persistence Layers
      • Quick Start
        • Using Roo from the Command Line
        • Using Roo with Spring Tool Suite
      • A Spring Roo JPA Repository Example
        • Creating the Project
        • Setting Up JPA Persistence
        • Creating the Entities
        • Defining the Repositories
        • Creating the Web Layer
        • Running the Example
      • A Spring Roo MongoDB Repository Example
        • Creating the Project
        • Setting Up MongoDB Persistence
        • Creating the Entities
        • Defining the Repositories
        • Creating the Web Layer
        • Running the Example
    • 10. REST Repository Exporter
      • The Sample Project
        • Interacting with the REST Exporter
        • Accessing Products
        • Accessing Customers
        • Accessing Orders
  • V. Big Data
    • 11. Spring for Apache Hadoop
      • Challenges Developing with Hadoop
      • Hello World
      • Hello World Revealed
      • Hello World Using Spring for Apache Hadoop
      • Scripting HDFS on the JVM
      • Combining HDFS Scripting and Job Submission
      • Job Scheduling
        • Scheduling MapReduce Jobs with a TaskScheduler
        • Scheduling MapReduce Jobs with Quartz
    • 12. Analyzing Data with Hadoop
      • Using Hive
        • Hello World
        • Running a Hive Server
        • Using the Hive Thrift Client
        • Using the Hive JDBC Client
        • Apache Logfile Analysis Using Hive
      • Using Pig
        • Hello World
        • Running a PigServer
        • Controlling Runtime Script Execution
        • Calling Pig Scripts Inside Spring Integration Data Pipelines
        • Apache Logfile Analysis Using Pig
      • Using HBase
        • Hello World
        • Using the HBase Java Client
    • 13. Creating Big Data Pipelines with Spring Batch and Spring Integration
      • Collecting and Loading Data into HDFS
        • An Introduction to Spring Integration
        • Copying Logfiles
        • Event Streams
        • Event Forwarding
        • Management
        • An Introduction to Spring Batch
        • Processing and Loading Data from a Database
      • Hadoop Workflows
        • Spring Batch Support for Hadoop
        • Wordcount as a Spring Batch Application
        • Hive and Pig Steps
      • Exporting Data from HDFS
        • From HDFS to JDBC
        • From HDFS to MongoDB
      • Collecting and Loading Data into Splunk
  • VI. Data Grids
    • 14. GemFire: A Distributed Data Grid
      • GemFire in a Nutshell
      • Caches and Regions
      • How to Get GemFire
      • Configuring GemFire with the Spring XML Namespace
        • Cache Configuration
        • Region Configuration
        • Cache Client Configuration
        • Cache Server Configuration
        • WAN Configuration
        • Disk Store Configuration
      • Data Access with GemfireTemplate
      • Repository Usage
        • POJO Mapping
        • Creating a Repository
        • PDX Serialization
      • Continuous Query Support
  • Bibliography
  • Index
  • About the Authors
  • Colophon
  • SPECIAL OFFER: Upgrade this ebook with OReilly
  • Copyright

Dodaj do koszyka Spring Data

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.