reklama - zainteresowany?

SQL for Data Analytics. Analyze data effectively, uncover insights and master advanced SQL for real-world applications - Fourth Edition - Helion

SQL for Data Analytics. Analyze data effectively, uncover insights and  master advanced SQL for real-world applications - Fourth Edition
ebook
Autor: Jun Shan, Haibin Li, Matt Goldwasser, Upom Malik, Benjamin Johnston
Tytuł oryginału: SQL for Data Analytics. Analyze data effectively, uncover insights and master advanced SQL for real-world applications - Fourth Edition
ISBN: 9781836646242
Format: ebook
Księgarnia: Helion

Cena książki: 129,00 zł

Książka będzie dostępna od sierpnia 2025

Tagi: Analiza danych | Inne | Techniki programowania

SQL remains one of the most powerful tools in modern data analytics—and this book helps you use it not just to write queries, but to deliver insights.
SQL for Data Analytics, Fourth Edition takes you beyond basic SQL syntax and teaches you how to analyze real-world data with confidence. Whether you're a beginner aiming to understand production data or a professional seeking to upgrade your analytics toolkit, this book gives you the skills to turn data into actionable outcomes.

You'll begin by learning how to create and manage structured databases, before diving into data retrieval, transformation, and summarization. From there, you’ll tackle more complex tasks: window functions, statistical operations, and analysis of geospatial, time-series, and text data.
With hands-on exercises, case studies, and detailed guidance, this book prepares you to apply SQL in everyday business contexts—whether you're cleaning data, building dashboards, or presenting insights to stakeholders.

Spis treści

SQL for Data Analytics. Analyze data effectively, uncover insights and master advanced SQL for real-world applications - Fourth Edition eBook -- spis treści

  • 1. Introduction to Data Management Systems
  • 2. Creating Table with Solid Structure
  • 3. Exchange Data using COPY
  • 4. Manipulating Data with Python
  • 5. Presenting Data with SELECT
  • 6. Transforming and Updating Data
  • 7. Defining Datasets from Existing Datasets
  • 8. Aggregating Data with GROUP BY
  • 9. Inter-row Operation with Window Functions
  • 10. Performant SQL
  • 11. Processing JSON and Array
  • 12. Advanced Data Types: Date, Geospatial, and Text
  • 13. Inferential Statistics using SQL
  • 14. A Case Study for Analytics using SQL

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.