R Data Science Essentials. R Data Science Essentials - Helion
Tytuł oryginału: R Data Science Essentials. R Data Science Essentials
ISBN: 9781785286360
stron: 154, Format: ebook
Data wydania: 2016-01-13
Księgarnia: Helion
Cena książki: 109,00 zł
With organizations increasingly embedding data science across their enterprise and with management becoming more data-driven it is an urgent requirement for analysts and managers to understand the key concept of data science. The data science concepts discussed in this book will help you make key decisions and solve the complex problems you will inevitably face in this new world.
R Data Science Essentials will introduce you to various important concepts in the field of data science using R. We start by reading data from multiple sources, then move on to processing the data, extracting hidden patterns, building predictive and forecasting models, building a recommendation engine, and communicating to the user through stunning visualizations and dashboards.
By the end of this book, you will have an understanding of some very important techniques in data science, be able to implement them using R, understand and interpret the outcomes, and know how they helps businesses make a decision.
Osoby które kupowały "R Data Science Essentials. R Data Science Essentials", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
R Data Science Essentials. R Data Science Essentials eBook -- spis treści
- 1. Getting Started with R data science
- 2. Exploratory Data Analysis
- 3. Pattern Discovery
- 4. Segmentation using Clustering
- 5. Developing Regression Models
- 6. Time Series Forecasting
- 7. Recommendation Engine
- 8. Communicating Data Analysis