Python Social Media Analytics - Helion
Tytuł oryginału: Python Social Media Analytics
ISBN: 9781787126756
stron: 307, Format: ebook
Data wydania: 2017-07-28
Księgarnia: Helion
Cena książki: 143,10 zł (poprzednio: 159,00 zł)
Oszczędzasz: 10% (-15,90 zł)
Leverage the power of Python to collect, process, and mine deep insights from social media data
About This Book
- Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more
- Analyze and extract actionable insights from your social data using various Python tools
- A highly practical guide to conducting efficient social media analytics at scale
Who This Book Is For
If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process.
What You Will Learn
- Understand the basics of social media mining
- Use PyMongo to clean, store, and access data in MongoDB
- Understand user reactions and emotion detection on Facebook
- Perform Twitter sentiment analysis and entity recognition using Python
- Analyze video and campaign performance on YouTube
- Mine popular trends on GitHub and predict the next big technology
- Extract conversational topics on public internet forums
- Analyze user interests on Pinterest
- Perform large-scale social media analytics on the cloud
In Detail
Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business.
Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup.
Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes.
Style and approach
This book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required.
Osoby które kupowały "Python Social Media Analytics", wybierały także:
- Databricks. Kurs video. Wst 148,98 zł, (59,59 zł -60%)
- Apache NiFi. Kurs video. Automatyzacja przep 148,98 zł, (59,59 zł -60%)
- Web scraping. Kurs video. Zautomatyzowane pozyskiwanie danych z sieci 139,00 zł, (55,60 zł -60%)
- Data Science w Pythonie. Kurs video. Przetwarzanie i analiza danych 149,00 zł, (67,05 zł -55%)
- Excel 2013. Kurs video. Poziom drugi. Przetwarzanie i analiza danych 79,00 zł, (35,55 zł -55%)
Spis treści
Python Social Media Analytics. Analyze and visualize data from Twitter, YouTube, GitHub, and more eBook -- spis treści
- 1. Social Media and Social Media Analytics in a Nutshell
- 2. Harness the Social Data - Connecting, Capturing and Cleaning
- 3. Uncovering Brand activity, emotions and popularity on Facebook
- 4. Analysing Twitter using sentiment analysis and entity recognition
- 5. Campaigns and consumer reaction analytics on Youtube (structured and unstructured)
- 6. What will be the next great technology ? Trends mining on Github
- 7. Scraping and extracting conversational Topics on Internet Forums
- 8. Demystifying Pinterest through Network Analysis of user’s interests
- 9. Social Data Analytics at Scale (Spark, Amazon Web services)