reklama - zainteresowany?

Python. Obliczenia i analiza danych z wykorzystaniem NumPy, SciPy i Matplotlib - Helion

Python. Obliczenia i analiza danych z wykorzystaniem NumPy, SciPy i Matplotlib
Autor: Robert Johansson
Tytuł oryginału: Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
ISBN: 978-83-283-7150-7
okładka: miękka
Data wydania: 2020-11-01
Księgarnia: Helion

Cena książki: 89,25 zł (poprzednio: 119,00 zł)
Oszczędzasz: 25% (-29,75 zł)

Dodaj do koszyka Python. Obliczenia i analiza danych z wykorzystaniem NumPy, SciPy i Matplotlib

Dodaj do koszyka Python. Obliczenia i analiza danych z wykorzystaniem NumPy, SciPy i Matplotlib

 

Osoby które kupowały "Python. Obliczenia i analiza danych z wykorzystaniem NumPy, SciPy i Matplotlib", wybierały także:

  • Biologika Sukcesji Pokoleniowej. Sezon 3. Konflikty na terytorium
  • Windows Media Center. Domowe centrum rozrywki
  • Podręcznik startupu. Budowa wielkiej firmy krok po kroku
  • Ruby on Rails. Ćwiczenia
  • Scrum. O zwinnym zarz

Dodaj do koszyka Python. Obliczenia i analiza danych z wykorzystaniem NumPy, SciPy i Matplotlib

Spis treści

Matematyczny Python. Obliczenia naukowe i analiza danych z użyciem NumPy, SciPy i Matplotlib -- spis treści


O autorze 13

O korektorach merytorycznych 15

Wprowadzenie 19

Rozdział 1. Wprowadzenie do obliczeń w Pythonie 23

  • Środowiska obliczeniowe w Pythonie 26
  • Python 27
    • Interpreter 27
  • Konsola IPython 28
    • Buforowanie wejścia i wyjścia 29
    • Autouzupełnianie i introspekcja obiektów 30
    • Dokumentacja 30
    • Interakcja z powłoką systemową 31
    • Rozszerzenia IPythona 31
  • Jupyter 36
    • Jupyter QtConsole 37
    • Jupyter Notebook 37
    • Jupyter Lab 39
    • Rodzaje komórek 40
    • Edycja komórek 41
    • Komórki typu Markdown 42
    • Możliwości prezentacji danych 42
    • nbconvert 46
  • Zintegrowane środowisko programistyczne Spyder 48
    • Edytor kodu źródłowego 50
    • Konsola w Spyderze 50
    • Inspektor obiektów 51
  • Podsumowanie 51
  • Materiały dodatkowe 52
  • Bibliografia 52

Rozdział 2. Wektory, macierze i tablice wielowymiarowe 53

  • Importowanie modułów 54
  • Typ tablicowy NumPy 54
    • Typy danych 55
    • Reprezentacja danych tablicowych w pamięci 57
  • Tworzenie tablic 58
    • Tablice utworzone na podstawie list i innych obiektów tablicopodobnych 60
    • Tablice wypełnione stałymi wartościami 60
    • Tablice wypełnione rosnącymi wartościami 61
    • Tablice z wartościami rozmieszczonymi logarytmicznie 62
    • Tablice z siatkami współrzędnych 62
    • Tworzenie niezainicjalizowanych tablic 63
    • Tworzenie tablic o cechach innych tablic 63
    • Tworzenie macierzy 63
  • Indeksowanie i zakresy 64
    • Tablice jednowymiarowe 64
    • Tablice wielowymiarowe 66
    • Widoki 67
    • Indeksowanie logiczne i fancy indexing 68
  • Zmiany kształtu i rozmiaru 69
  • Wyrażenia zwektoryzowane 74
    • Operacje arytmetyczne 74
    • Funkcje działające na elementach 77
    • Funkcje agregujące 79
    • Wyrażenia warunkowe i tablice wartości logicznych 81
    • Operacje na zbiorach 84
    • Operacje na tablicach 85
  • Operacje macierzowe i wektorowe 86
  • Podsumowanie 91
  • Materiały dodatkowe 92
  • Bibliografia 92

Rozdział 3. Obliczenia symboliczne 93

  • Importowanie modułów 94
  • Symbole 95
    • Liczby 97
  • Wyrażenia 102
  • Manipulowanie wyrażeniami 103
    • Upraszczanie wyrażeń 103
    • Rozwijanie wyrażeń 105
    • Funkcje factor, collect i combine 105
    • Funkcje Apart, Together i Cancel 106
    • Podstawienia 107
  • Ewaluacja wyrażeń 108
  • Rachunek różniczkowy 109
    • Pochodne 109
    • Całki 111
    • Szeregi 112
    • Granice 114
    • Sumy i iloczyny uogólnione 115
  • Równania 115
  • Algebra liniowa 117
  • Podsumowanie 120
  • Materiały dodatkowe 121
  • Bibliografia 121

Rozdział 4. Wykresy i wizualizacje 123

  • Importowanie modułów 124
  • Pierwsze kroki 125
    • Tryb interaktywny i nieinteraktywny 128
  • Klasa Figure 130
  • Klasa Axes 131
    • Typy wykresów 132
    • Parametry linii 133
    • Legendy 136
    • Formatowanie tekstu i adnotacje 138
    • Właściwości osi 140
  • Złożone układy obiektów Axes 149
    • Wstawki 149
    • plt.subplots 150
    • subplot2grid 152
    • GridSpec 152
  • Wykresy typu colormap 153
  • Wykresy 3D 156
  • Podsumowanie 158
  • Materiały dodatkowe 158
  • Bibliografia 158

Rozdział 5. Rozwiązywanie równań 159

  • Importowanie modułów 160
  • Układy równań liniowych 160
    • Układy z macierzą kwadratową 161
    • Układy równań z macierzą prostokątną 166
  • Problem wartości własnych 169
  • Równania nieliniowe 171
    • Równania jednowymiarowe 171
    • Układy równań nieliniowych 177
  • Podsumowanie 181
  • Materiały dodatkowe 181
  • Bibliografia 181

Rozdział 6. Optymalizacja 183

  • Importowanie modułów 184
  • Klasyfikacja problemów optymalizacyjnych 184
  • Optymalizacja jednowymiarowa 187
  • Optymalizacja wielowymiarowa bez ograniczeń 190
  • Nieliniowy problem najmniejszych kwadratów 196
  • Optymalizacja z ograniczeniami 198
    • Programowanie liniowe 202
  • Podsumowanie 204
  • Materiały dodatkowe 205
  • Bibliografia 205

Rozdział 7. Interpolacja 207

  • Importowanie modułów 208
  • Interpolacja 208
  • Wielomiany 209
  • Interpolacja wielomianowa 212
  • Interpolacja funkcjami sklejanymi 216
  • Interpolacja funkcji wielu zmiennych 218
  • Podsumowanie 224
  • Materiały dodatkowe 224
  • Bibliografia 224

Rozdział 8. Całkowanie 225

  • Importowanie modułów 226
  • Metody całkowania numerycznego 226
  • Całkowanie numeryczne z użyciem SciPy 230
    • Całki z funkcji w postaci tablicowej 233
  • Całki wielokrotne 235
  • Całkowanie symboliczne i całkowanie z dowolną precyzją 239
    • Całki krzywoliniowe 241
  • Transformaty całkowe 241
  • Podsumowanie 244
  • Materiały dodatkowe 245
  • Bibliografia 245

Rozdział 9. Równanie różniczkowe zwyczajne 247

  • Importowanie modułów 248
  • Równania różniczkowe zwyczajne 248
  • Rozwiązania symboliczne 250
    • Pola kierunków 255
    • Rozwiązywanie równań z użyciem transformaty Laplace'a 258
  • Numeryczne metody rozwiązywania równań różniczkowych 261
  • Numeryczne rozwiązywanie równań różniczkowych z użyciem SymPy 264
  • Podsumowanie 275
  • Materiały dodatkowe 276
  • Bibliografia 276

Rozdział 10. Macierze rzadkie i grafy 277

  • Importowanie modułów 278
  • Macierze rzadkie w SciPy 278
    • Funkcje do tworzenia macierzy rzadkich 283
    • Algebra liniowa macierzy rzadkich 285
    • Układy równań liniowych 285
    • Grafy i sieci 291
  • Podsumowanie 297
  • Materiały dodatkowe 297
  • Bibliografia 297

Rozdział 11. Równania różniczkowe cząstkowe 299

  • Importowanie modułów 300
  • Równania różniczkowe cząstkowe 301
  • Metoda różnic skończonych 302
  • Metoda elementów skończonych 307
    • Przegląd frameworków MES 310
  • Rozwiązywanie równań różniczkowych cząstkowych z użyciem FEniCS-a 311
  • Podsumowanie 330
  • Materiały dodatkowe 330
  • Bibliografia 331

Rozdział 12. Przetwarzanie i analiza danych 333

  • Importowanie modułów 334
  • Wprowadzenie do Pandas 334
    • Typ Series 335
    • Typ DataFrame 337
    • Szeregi czasowe 344
  • Biblioteka Seaborn 353
  • Podsumowanie 358
  • Materiały dodatkowe 358
  • Bibliografia 359

Rozdział 13. Statystyka 361

  • Importowanie modułów 362
  • Statystyka i prawdopodobieństwo 362
  • Liczby losowe 364
  • Zmienne losowe i rozkłady 367
  • Testowanie hipotez 374
  • Metody nieparametryczne 378
  • Podsumowanie 381
  • Materiały dodatkowe 381
  • Bibliografia 381

Rozdział 14. Modelowanie statystyczne 383

  • Importowanie modułów 384
  • Wprowadzenie do modelowania statystycznego 385
  • Definiowanie modeli statystycznych w Patsy 386
  • Regresja liniowa 393
    • Przykładowe zbiory danych 400
  • Regresja dyskretna 401
    • Regresja logistyczna 402
    • Model Poissona 406
  • Szeregi czasowe 409
  • Podsumowanie 413
  • Materiały dodatkowe 413
  • Bibliografia 413

Rozdział 15. Uczenie maszynowe 415

  • Importowanie modułów 416
  • Krótki przegląd uczenia maszynowego 417
  • Regresja 419
  • Klasyfikacja 428
  • Klasteryzacja 431
  • Podsumowanie 436
  • Materiały dodatkowe 436
  • Bibliografia 436

Rozdział 16. Statystyka bayesowska 437

  • Importowanie modułów 438
  • Wprowadzenie do statystyki bayesowskiej 439
  • Definiowanie modelu 441
    • Próbkowanie rozkładów a posteriori 445
    • Regresja liniowa 448
  • Podsumowanie 458
  • Materiały dodatkowe 459
  • Bibliografia 459

Rozdział 17. Przetwarzanie sygnałów 461

  • Importowanie modułów 462
  • Analiza spektralna 462
    • Transformata Fouriera 462
    • Okna czasowe 467
    • Spektrogramy 471
  • Filtrowanie sygnałów 474
    • Filtry konwolucyjne 474
    • Filtry o skończonej i nieskończonej odpowiedzi impulsowej 476
  • Podsumowanie 481
  • Materiały dodatkowe 481
  • Bibliografia 481

Rozdział 18. Wprowadzanie i wyprowadzanie danych 483

  • Importowanie modułów 484
  • Format CSV 485
  • HDF5 489
    • h5py 490
    • PyTables 500
    • HDFStore z Pandas 503
  • JSON 505
  • Serializacja 509
  • Podsumowanie 511
  • Materiały dodatkowe 511
  • Bibliografia 512

Rozdział 19. Optymalizacja kodu 513

  • Importowanie modułów 515
  • Numba 516
  • Cython 522
  • Podsumowanie 531
  • Materiały dodatkowe 532
  • Bibliografia 532

Dodatek. Instalacja i konfiguracja środowiska 533

  • Miniconda i conda 534
  • Pełne środowisko 540
  • Podsumowanie 543
  • Materiały dodatkowe 543

Dodaj do koszyka Python. Obliczenia i analiza danych z wykorzystaniem NumPy, SciPy i Matplotlib

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.