reklama - zainteresowany?

PyTorch Deep Learning Hands-On - Helion

PyTorch Deep Learning Hands-On
ebook
Autor: Sherin Thomas, Sudhanshu Passi
Tytuł oryginału: PyTorch Deep Learning Hands-On
ISBN: 9781788833431
stron: 251, Format: ebook
Data wydania: 2019-04-30
Księgarnia: Helion

Cena książki: 107,10 zł (poprzednio: 119,00 zł)
Oszczędzasz: 10% (-11,90 zł)

Dodaj do koszyka PyTorch Deep Learning Hands-On

Tagi: Uczenie maszynowe

Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch

Key Features

  • Internals and principles of PyTorch
  • Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more
  • Build deep learning workflows and take deep learning models from prototyping to production

Book Description

PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly.

PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools.

Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch.

This book is ideal if you want to rapidly add PyTorch to your deep learning toolset.

What you will learn

Use PyTorch to build:

  • Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and more
  • Convolutional Neural Networks – create advanced computer vision systems
  • Recurrent Neural Networks – work with sequential data such as natural language and audio
  • Generative Adversarial Networks – create new content with models including SimpleGAN and CycleGAN
  • Reinforcement Learning – develop systems that can solve complex problems such as driving or game playing
  • Deep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packages
  • Production-ready models – package your models for high-performance production environments

Who this book is for

Machine learning engineers who want to put PyTorch to work.

Dodaj do koszyka PyTorch Deep Learning Hands-On

 

Osoby które kupowały "PyTorch Deep Learning Hands-On", wybierały także:

  • Data Science w Pythonie. Kurs video. Przetwarzanie i analiza danych
  • Machine Learning i jÄ™zyk Python. Kurs video. Praktyczne wykorzystanie popularnych bibliotek
  • Matematyka w deep learningu. Co musisz wiedzie
  • Dylemat sztucznej inteligencji. 7 zasad odpowiedzialnego tworzenia technologii
  • Eksploracja danych za pomoc

Dodaj do koszyka PyTorch Deep Learning Hands-On

Spis treści

PyTorch Deep Learning Hands-On. Build CNNs, RNNs, GANs, reinforcement learning, and more, quickly and easily eBook -- spis treści

  • 1. Deep Learning Walkthrough and PyTorch Introduction
  • 2. A Simple Neural Network
  • 3. Deep Learning Workflow
  • 4. Computer Vision
  • 5. Sequential Data Processing
  • 6. Generative Networks
  • 7. Reinforcement Learning
  • 8. PyTorch to Production

Dodaj do koszyka PyTorch Deep Learning Hands-On

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2024 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.