reklama - zainteresowany?

Practical Deep Learning at Scale with MLflow - Helion

Practical Deep Learning at Scale with MLflow
ebook
Autor: Yong Liu, Dr. Matei Zaharia
Tytuł oryginału: Practical Deep Learning at Scale with MLflow
ISBN: 9781803242224
stron: 288, Format: ebook
Data wydania: 2022-07-08
Księgarnia: Helion

Cena książki: 116,10 zł (poprzednio: 129,00 zł)
Oszczędzasz: 10% (-12,90 zł)

Dodaj do koszyka Practical Deep Learning at Scale with MLflow

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas.
From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You’ll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you’ll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox.
By the end of this book, you’ll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.

Dodaj do koszyka Practical Deep Learning at Scale with MLflow

 

Osoby które kupowały "Practical Deep Learning at Scale with MLflow", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka Practical Deep Learning at Scale with MLflow

Spis treści

Practical Deep Learning at Scale with MLflow. Bridge the gap between offline experimentation and online production eBook -- spis treści

  • 1. Deep Learning Life Cycle and MLOps Challenges
  • 2. Getting Started with MLflow for Deep Learning
  • 3. Tracking Models, Parameters, and Metrics
  • 4. Tracking Code and Data Versioning
  • 5. Running DL Pipelines in Different Environments
  • 6. Running Hyperparameter Tuning at Scale
  • 7. Multi-Step Deep Learning Inference Pipeline
  • 8. Deploying a DL Inference Pipeline at Scale
  • 9. Fundamentals of Deep Learning Explainability
  • 10. Implementing DL Explainability with MLflow

Dodaj do koszyka Practical Deep Learning at Scale with MLflow

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.