reklama - zainteresowany?

Practical Computer Vision - Helion

Practical Computer Vision
ebook
Autor: Abhinav Dadhich
Tytuł oryginału: Practical Computer Vision
ISBN: 9781788294768
stron: 227, Format: ebook
Data wydania: 2018-02-05
Księgarnia: Helion

Cena książki: 98,10 zł (poprzednio: 109,00 zł)
Oszczędzasz: 10% (-10,90 zł)

Dodaj do koszyka Practical Computer Vision

Tagi: Analiza danych | Big Data | Uczenie maszynowe

A practical guide designed to get you from basics to current state of art in computer vision systems.

About This Book

  • Master the different tasks associated with Computer Vision and develop your own Computer Vision applications with ease
  • Leverage the power of Python, Tensorflow, Keras, and OpenCV to perform image processing, object detection, feature detection and more
  • With real-world datasets and fully functional code, this book is your one-stop guide to understanding Computer Vision

Who This Book Is For

This book is for machine learning practitioners and deep learning enthusiasts who want to understand and implement various tasks associated with Computer Vision and image processing in the most practical manner possible. Some programming experience would be beneficial while knowing Python would be an added bonus.

What You Will Learn

  • Learn the basics of image manipulation with OpenCV
  • Implement and visualize image filters such as smoothing, dilation, histogram equalization, and more
  • Set up various libraries and platforms, such as OpenCV, Keras, and Tensorflow, in order to start using computer vision, along with appropriate datasets for each chapter, such as MSCOCO, MOT, and Fashion-MNIST
  • Understand image transformation and downsampling with practical implementations.
  • Explore neural networks for computer vision and convolutional neural networks using Keras
  • Understand working on deep-learning-based object detection such as Faster-R-CNN, SSD, and more
  • Explore deep-learning-based object tracking in action
  • Understand Visual SLAM techniques such as ORB-SLAM

In Detail

In this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you'll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you'll use them to find similar-looking objects.

With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You'll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset.

By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications.

Style and approach

Step-by-step guide filled with real-world, practical examples for understanding and applying various Computer Vision techniques

Dodaj do koszyka Practical Computer Vision

 

Osoby które kupowały "Practical Computer Vision", wybierały także:

  • Data Science w Pythonie. Kurs video. Algorytmy uczenia maszynowego
  • Power BI Desktop. Kurs video. Wykorzystanie narzÄ™dzia w analizie i wizualizacji danych
  • Statystyka. Kurs video. Przewodnik dla student
  • Microsoft Excel. Kurs video. Wykresy i wizualizacja danych
  • Analiza danych w Tableau. Kurs video. Podstawy pracy analityka

Dodaj do koszyka Practical Computer Vision

Spis treści

Practical Computer Vision. Extract insightful information from images using TensorFlow, Keras, and OpenCV eBook -- spis treści

  • 1. A Fast Introduction to Computer Vision
  • 2. Libraries, Development Platform, and Datasets
  • 3. Image Filtering and Transformations in OpenCV
  • 4. What is a Feature?
  • 5. Convolutional Neural Networks
  • 6. Feature-Based Object Detection
  • 7. Segmentation and Tracking
  • 8. 3D Computer Vision
  • 9. Mathematics for Computer Vision
  • 10. Machine Learning for Computer Vision

Dodaj do koszyka Practical Computer Vision

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2024 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.