reklama - zainteresowany?

Mastering Machine Learning Algorithms - Helion

Mastering Machine Learning Algorithms
ebook
Autor: Giuseppe Bonaccorso
Tytuł oryginału: Mastering Machine Learning Algorithms
ISBN: 9781838821913
stron: 799, Format: ebook
Data wydania: 2020-01-31
Księgarnia: Helion

Cena książki: 125,10 zł (poprzednio: 139,00 zł)
Oszczędzasz: 10% (-13,90 zł)

Dodaj do koszyka Mastering Machine Learning Algorithms

Tagi: Uczenie maszynowe

Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems

Key Features

  • Updated to include new algorithms and techniques
  • Code updated to Python 3.8 & TensorFlow 2.x
  • New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applications

Book Description

Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains.

You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks.

By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios.

What you will learn

  • Understand the characteristics of a machine learning algorithm
  • Implement algorithms from supervised, semi-supervised, unsupervised, and RL domains
  • Learn how regression works in time-series analysis and risk prediction
  • Create, model, and train complex probabilistic models
  • Cluster high-dimensional data and evaluate model accuracy
  • Discover how artificial neural networks work – train, optimize, and validate them
  • Work with autoencoders, Hebbian networks, and GANs

Who this book is for

This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.

Dodaj do koszyka Mastering Machine Learning Algorithms

 

Osoby które kupowały "Mastering Machine Learning Algorithms", wybierały także:

  • Data Science w Pythonie. Kurs video. Przetwarzanie i analiza danych
  • Machine Learning i jÄ™zyk Python. Kurs video. Praktyczne wykorzystanie popularnych bibliotek
  • Matematyka w deep learningu. Co musisz wiedzie
  • Dylemat sztucznej inteligencji. 7 zasad odpowiedzialnego tworzenia technologii
  • Eksploracja danych za pomoc

Dodaj do koszyka Mastering Machine Learning Algorithms

Spis treści

Mastering Machine Learning Algorithms. Expert techniques for implementing popular machine learning algorithms, fine-tuning your models, and understanding how they work - Second Edition eBook -- spis treści

  • 1. Machine Learning Model Fundamentals
  • 2. Loss functions and Regularization
  • 3. Introduction to Semi-Supervised Learning
  • 4. Advanced Semi-Supervised Classifiation
  • 5. Graph-based Semi-Supervised Learning
  • 6. Clustering and Unsupervised Models
  • 7. Advanced Clustering and Unsupervised Models
  • 8. Clustering and Unsupervised Models for Marketing
  • 9. Generalized Linear Models and Regression
  • 10. Introduction to Time-Series Analysis
  • 11. Bayesian Networks and Hidden Markov Models
  • 12. The EM Algorithm
  • 13. Component Analysis and Dimensionality Reduction
  • 14. Hebbian Learning
  • 15. Fundamentals of Ensemble Learning
  • 16. Advanced Boosting Algorithms
  • 17. Modeling Neural Networks
  • 18. Optimizing Neural Networks
  • 19. Deep Convolutional Networks
  • 20. Recurrent Neural Networks
  • 21. Auto-Encoders
  • 22. Introduction to Generative Adversarial Networks
  • 23. Deep Belief Networks
  • 24. Introduction to Reinforcement Learning
  • 25. Advanced Policy Estimation Algorithms

Dodaj do koszyka Mastering Machine Learning Algorithms

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2024 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.