Machine Learning with Python. Unlocking AI Potential with Python and Machine Learning - Helion
Tytuł oryginału: Machine Learning with Python. Unlocking AI Potential with Python and Machine Learning
ISBN: 9781835462072
stron: 146, Format: ebook
Data wydania: 2024-03-06
Księgarnia: Helion
Cena książki: 35,91 zł (poprzednio: 39,90 zł)
Oszczędzasz: 10% (-3,99 zł)
The course starts by setting the foundation with an introduction to machine learning, Python, and essential libraries, ensuring you grasp the basics before diving deeper. It then progresses through exploratory data analysis, data scrubbing, and pre-model algorithms, equipping you with the skills to understand and prepare your data for modeling.
The journey continues with detailed walkthroughs on creating, evaluating, and optimizing machine learning models, covering key algorithms such as linear and logistic regression, support vector machines, k-nearest neighbors, and tree-based methods. Each section is designed to build upon the previous, reinforcing learning and application of concepts.
Wrapping up, the course introduces the next steps, including an introduction to Python for newcomers, ensuring a comprehensive understanding of machine learning applications.
Osoby które kupowały "Machine Learning with Python. Unlocking AI Potential with Python and Machine Learning", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Machine Learning with Python. Unlocking AI Potential with Python and Machine Learning eBook -- spis treści
- 1. FOREWORD
- 2. DATASETS USED IN THIS BOOK
- 3. INTRODUCTION
- 4. DEVELOPMENT ENVIRONMENT
- 5. MACHINE LEARNING LIBRARIES
- 6. EXPLORATORY DATA ANALYSIS
- 7. DATA SCRUBBING
- 8. PRE-MODEL ALGORITHMS
- 9. SPLIT VALIDATION
- 10. MODEL DESIGN
- 11. LINEAR REGRESSION
- 12. LOGISTIC REGRESSION
- 13. SUPPORT VECTOR MACHINES
- 14. K-NEAREST NEIGHBORS
- 15. TREE-BASED METHODS
- 16. NEXT STEPS
- 17. APPENDIX 1: INTRODUCTION TO PYTHON
- 18. APPENDIX 2: PRINT COLUMNS