MPLS in the SDN Era. Interoperable Scenarios to Make Networks Scale to New Services - Helion
ISBN: 978-14-919-0541-8
stron: 920, Format: ebook
Data wydania: 2015-12-07
Księgarnia: Helion
Cena książki: 228,65 zł (poprzednio: 256,91 zł)
Oszczędzasz: 11% (-28,26 zł)
How can you make multivendor services work smoothly on today’s complex networks? This practical book shows you how to deploy a large portfolio of multivendor Multiprotocol Label Switching (MPLS) services on networks, down to the configuration level. You’ll learn where Juniper Network's Junos, Cisco's IOS XR, and OpenContrail, interoperate and where they don’t.
Two network and cloud professionals from Juniper describe how MPLS technologies and applications have rapidly evolved through services and architectures such as Ethernet VPNs, Network Function Virtualization, Seamless MPLS, Egress Protection, External Path Computation, and more. This book contains no vendor bias or corporate messages, just solid information on how to get a multivendor network to function optimally.
Topics include:
- Introduction to MPLS and Software-Defined Networking (SDN)
- The four MPLS Builders (LDP, RSVP-TE, IGP SPRING, and BGP)
- Layer 3 unicast and multicast MPLS services, Layer 2 VPN, VPLS, and Ethernet VPN
- Inter-domain MPLS Services
- Underlay and overlay architectures: data centers, NVO, and NFV
- Centralized Traffic Engineering and TE bandwidth reservations
- Scaling MPLS transport and services
- Transit fast restoration based on the IGP and RSVP-TE
- FIB optimization and egress service for fast restoration
Osoby które kupowały "MPLS in the SDN Era. Interoperable Scenarios to Make Networks Scale to New Services", wybierały także:
- Sieci komputerowe. Najczęstsze problemy i ich rozwiązania 119,00 zł, (59,50 zł -50%)
- Praktyczne projekty sieciowe 69,00 zł, (34,50 zł -50%)
- Sieci komputerowe. Kurs. Wydanie II 44,90 zł, (22,45 zł -50%)
- Active Directory w systemach wolnego oprogramowania 44,90 zł, (22,45 zł -50%)
- Samba 4. Przewodnik administratora 44,00 zł, (22,00 zł -50%)
Spis treści
MPLS in the SDN Era. Interoperable Scenarios to Make Networks Scale to New Services eBook -- spis treści
- Preface
- About This Book
- Interoperability
- MPLS in the SDN Era
- Live Book
- Contents of This Book
- Disclaimer
- Conventions Used in This Book
- Safari Books Online
- How to Contact Us
- Acknowledgments
- About This Book
- 1. Introduction to MPLS and SDN
- The Internet
- ISP Example Topology
- Router Types in a Service Provider
- Customer equipment
- The coreprovider edge
- The coreprovider
- The borderASBR
- Hosts
- Route Reflectors
- BGP Configuration
- BGP configurationPEs and ASBRs running Junos
- BGP configurationRRs running Junos
- BGP ConfigurationPEs and ASBRs running IOS XR
- BGP configurationRRs running IOS XR
- BGP Route Signaling and Redundancy
- Nonredundant BGP Routes
- Active-Backup BGP routes
- Active-Active BGP routes
- Packet Forwarding in a BGP-Less Core
- Router Types in a Service Provider
- MPLS
- MPLS in Action
- Router roles in a LSP
- The MPLS Header
- MPLS Configuration and Forwarding Plane
- MPLS interface configuration
- Label-switched path PE1PE4configuration
- LSP PE1PE4forwarding plane
- LSP PE4PE2Configuration
- End-to-end user traffic
- Forwarding Equivalence Class
- Again, What Is MPLS?
- MPLS in Action
- OpenFlow
- OpenFlowFlow-Based Forwarding
- OpenFlowOpenness and P4
- SDN
- Separation of the Control and Forwarding Planes
- Separating the control and forwarding planesdata center overlays
- Separating the control and forwarding planesWAN IP/MPLS
- SDN and the Protocols
- Separation of the Control and Forwarding Planes
- The SDN Era
- SDN-Era Use Cases
- Data center
- WAN
- Packet-optical convergence
- IP peering
- The branch office
- SDN-Era Use Cases
- 2. The Four MPLS Builders
- LDP
- LDP Discovery and LDP Sessions
- LDP Label Mapping
- LDP signaling and MPLS forwarding in the Junos plane
- LDP signaling and MPLS forwarding in the IOS XR plane
- LDP and Equal-Cost Multipath
- Load-balancing hash algorithm
- MPLS hash and Entropy Labels
- LDP Implementation Details
- Local FEC label binding/allocation
- Label advertisement modes
- Label distribution control modes
- Label retention modes
- FEC aggregation
- LDP Inter-Area
- Protecting LDP Networks from Traffic Blackholing
- LDP IGP Synchronization (RFC 5443)
- LDP Session Protection
- RSVP-TE
- RSVP-TE LSP Fundamentals
- RSVP-TE Tunnels, LSPs, and Sessions
- RSVP-TE LSP configuration
- The Traffic Engineering Database
- Constrained Shortest-Path First
- RSVP-TE messages
- RSVP-TE in Action
- RSVP-TE signaling and MPLS forwarding in the Junos plane
- RSVP-TE signaling and MPLS forwarding in the IOS XR plane
- RSVP-Constrained Paths and ECMP
- Inter-Area RSVP-TE LSPs
- RSVP Auto Tunnel
- RSVP-TE LSP Fundamentals
- IGP and SPRING
- SPRING in Action
- SPRING Concepts
- SPRING Adjacency Segments
- A Comparison of LDP, RSVP-TE, and SPRING
- BGP-Labeled Unicast
- IGP-Free Large-Scale Data Centers
- BGP-LUpolicy and community scheme
- BGP-LU Configuration
- Junoscopying interface routes from inet.0 to inet.3
- JunosBGP-LU configuration
- IOS XRBGP-LU configuration
- Service Configuration in an IGP-Less Topology
- Junoscopying eBGP-LU routes from inet.3 to inet.0
- JunosVanilla eBGP configuration in IGP-less topology
- IOS XRvanilla eBGP configuration in IGP-less topology
- BGP-LUSignaling and Forwarding Plane
- BGP-LUSPRING Extensions
- SPRING Anycast
- IGP-Free Large-Scale Data Centers
- LDP
- 3. Layer 3 Unicast MPLS Services
- 6PE: IPv6 Transport in an IPv4/MPLS Core
- 6PEBackbone Configuration at the PEs
- 6PEbackbone configuration at Junos PEs
- 6PEbackbone configuration at IOS XR PEs
- 6PERR Configuration
- 6PEAccess Configuration at the PEs
- 6PEaccess configuration at Junos PEs
- 6PEaccess configuration at IOS XR PEs
- 6PESignaling
- 6PEForwarding Plane
- 6PEwhy is there a service label?
- 6PEservice label allocation
- 6PEtraceroute
- 6PEBackbone Configuration at the PEs
- BGP/MPLS IP Virtual Private Networks
- Attachment Circuits and Access Virtualization
- AC classificationper technology
- L3VPN in a Nutshell
- L3VPNSignaling
- Route Distinguisher
- VPN label
- Route Target
- L3VPNForwarding Plane
- L3VPNwhy is there a service label?
- L3VPNBackbone Configuration at the PEs
- L3VPNbackbone configuration at Junos PEs
- L3VPNbackbone configuration at IOS XR PEs
- L3VPNRR Configuration
- L3VPNVRF Configuration at the PEs
- L3VPNVRF configuration at Junos PEs
- L3VPNVRF configuration at IOS XR PEs
- L3VPNRouting Tables in Junos
- Virtual routers
- L3VPNService Label Allocation
- L3VPNTopologies
- L3VPNhub-and-spoke VPN
- L3VPNmanagement VPN
- L3VPNextranet
- L3VPNService Chaining
- L3VPNLoop Avoidance
- Internet Access from a VRF
- Attachment Circuits and Access Virtualization
- Route Target Constraint
- RTCSignaling
- RTCRR Configuration
- RTCPE Configuration
- Coupling MPLS Services to Transport Planes
- Configuring Several Loopbacks in the Default Instance
- Signaling LSPs to Different Loopback Addresses
- Plane ARSVP-TE LSPs to the remote PEs router ID
- Plane Bcontrolling LDP label bindings
- Plane CRSVP-TE LSPs to a secondary loopback address
- Changing the Service Routes BGP Next Hop
- 6PE: IPv6 Transport in an IPv4/MPLS Core
- 4. Internet Multicast Over MPLS
- IP Multicast
- IP Multicast Protocols
- IP Multicast Modes
- Classic Internet Multicast
- Starting Multicast Sources and Receivers
- Signaling the Multicast Tree
- IGMP signaling
- Reverse Path Forwarding
- PIM signaling
- Multicast forwarding
- Classic Internet MulticastConnecting Multicast Islands Across the Core
- One-hop transit through the core (PE1-PE2)
- Two-hop transit through the core (PE1-P1-PE3)
- Signaling Join State Between Remote PEs
- Carrier IP Multicast Flavors
- Direct Inter-PE ModelPE-to-PE PIM Adjacencies over Unicast IP Tunnels
- Direct Inter-PE ModelPE-to-PE PIM Adjacencies over Multicast IP Tunnels
- Direct Inter-PE ModelPE-PE PIM Adjacencies over MPLS Label-Switched Paths
- Beyond the Direct Inter-PE ModelNot Establishing PE-PE PIM Adjacencies
- Out-of-Band Model
- Hop-by-Hop Inter-PE model
- Internet Multicast over MPLS with In-Band Multipoint LDP Signaling
- Multipoint LDP
- In-Band Signaling
- Signaling Join state from an egress PE that runs Junos
- Signaling Join state from an egress PE that runs IOS XR
- Life of a C-Multicast Packet in an mLDP P2MP LSP
- Ingress PE
- Transit P-router running Junos
- Transit P-router running IOS XR
- Egress PE running Junos
- Egress PE running IOS XR
- CE Multihoming
- Egress PE redundancy
- Ingress PE redundancy
- mLDP In-Band and PIM ASM
- Other Internet Multicast over MPLS Flavors
- Static RSVP-TE P2MP LSPs
- BGP Internet Multicast
- IP Multicast
- 5. Multicast VPN
- BGP Multicast VPN with mLDP Transport
- MVPN Address Family
- MVPN route types
- MVPN address family configuration
- Configuring BGP MVPN
- Junos basic configuration
- IOS XR basic configuration
- MVPN Site AD
- MVPN Site AD in PEs running Junos
- MVPN Site AD in PEs running IOS XR
- Signaling C-Multicast (S, G) Join State with BGP
- Receiver PE configuration
- Route Importa new extended community
- Stripping extended communities from PECE eBGP updates
- MVPN Source Tree Join routes
- Signaling Provider TunnelsBGP and the PMSI Attribute
- Provider tunnels and PMSIs
- Provider tunnel classificationbased on the leaf set
- Inclusive PMSI
- (S, G) Selective PMSI
- Signaling Provider TunnelsMultipoint LDP for Transport
- mLDP signaling begins at the receiver PEs
- mLDP signaling continues at the Transit Ps
- mLDP signaling arrives at the sender PE
- Forwarding plane: from the Junos root PE to the leaves
- Root PE running IOS XR
- MVPN Address Family
- BGP Multicast VPN with RSVP-TE P2MP Transport
- Advertising the Inclusive PMSIRSVP-TE P2MP
- Sender PE running Junos
- Sender PE running IOS XR
- Receiver PEs running Junos
- Receiver PEs running IOS XR
- Advertising Selective PMSIsRSVP-TE P2MP
- Signaling P- Tunnels with RSVP-TE P2MP
- Leaf AD routes
- RSVP-TE P2MP state at the sender PEs
- RSVP-TE P2MP state at the Transit LSRs
- RSVP-TE P2MP state at the receiver PEs
- Advertising the Inclusive PMSIRSVP-TE P2MP
- BGP Multicast VPN with Ingress Replication
- Inclusive PMSIIR
- IR I-PMSI configuration
- IR I-PMSI signaling
- Selective PMSIIR
- BGP Multicast VPN with Other P- Tunnel Flavors
- Inclusive PMSIIR
- CE Multihoming in BGP Multicast VPN
- Egress PE Redundancy
- Ingress PE Redundancy
- Choosing the Best RD Scheme
- BGP Multicast VPN with C-PIM ASM
- ASM Mode
- C-Rendezvous PointPE and CE Configuration
- C-Multicast SignalingASM Mode with C-RP at the PEs
- Noncongruent C-Unicast and C-Multicast
- BGP Multicast VPN with mLDP Transport
- 6. Point-to-Point Layer 2 VPNs
- L2VPN in a Nutshell
- L2VPN Use Cases
- Corporate WAN and data centers
- BackhaulingL2VPN as a transport
- L2VPN Topological Classification
- L2VPN Signaling and Transport
- P2P L2VPNVaried Access Technologies
- L2VPN versus L1VPN
- L2.5 VPN
- Circuit Cross-Connect and Translational Cross-Connect
- L2VPN versus L1VPN
- L2VPN Flavors Covered in This Book
- L2VPN Use Cases
- VPWS Signaled with BGP
- BGP L2VPN Address Family
- BGP VPWS Configuration at the PEs
- BGP VPWS Signaling
- Route Target Constraint and L2VPN
- L2VPN Forwarding Plane
- Junos routing tables
- Control Word
- BGP VPWSCE Multihoming to Several PEs
- BGP VPWSPW status vector
- BGP VPWS multihoming at work
- Ethernet OAM (802.3ah, 802.1ag)
- BGP VPWSVLAN Tag Multiplexing
- BGP VPWSVLAN Tag Translation and Manipulation
- BGP VPWSPW Head-End (PWHE)
- BGP VPWSLoad Balancing
- VPWS Signaled with LDP
- LDP VPWS Configuration at the PEs
- LDP VPWS Signaling and Forwarding Planes
- LDP VPWSCE Multihoming and PW Redundancy
- LDP VPWSPW Status TLV
- LDP VPWSPW redundancy configuration
- LDP VPWSVLAN Tag Multiplexing
- LDP VPWSVLAN Tag Translation and Manipulation
- LDP VPWSPWHE
- LDP VPWSFAT
- L2VPN in a Nutshell
- 7. Virtual Private LAN Service
- Introduction to VPLS
- VPLS Signaled with BGP
- BGP VPLS Configuration
- BGP VPLS Signaling
- BGP VPLSEfficient BUM Replication
- VPLS with P2MP LSPsJunos configuration
- VPLS with P2MP LSPsIOS XR configuration
- VPLS with P2MP LSPssignaling
- VPLS Signaled with LDP
- LDP VPLS Configuration
- LDP VPLSJunos VPLS instances
- LDP VPLSJunos Virtual Switches
- LDP VPLSIOS XR configuration
- LDP VPLS Signaling
- LDP VPLSAutodiscovery via BGP
- LDP VPLSFEC 129BGP configuration
- LDP VPLSFEC 129Junos service configuration
- LDP VPLSFEC 129IOS XR service configuration
- LDP VPLSFEC 129 signaling
- LDP VPLSefficient BUM replication
- LDP VPLS Configuration
- VLANs and Learning Domains in VPLS
- VPLS in default VLAN mode
- Junos VPLS InstancesNormalized VLAN Mode
- Junos VPLS InstancesVLAN-Free Mode
- Junos VPLS InstancesVLAN-Aware Mode
- Junos Virtual Switches
- Integrated Routing and Bridging in VPLS
- IRB Configuration in Junos VPLS Instances
- IRB Configuration in Junos Virtual Switches
- IRB Configuration in IOS XR
- VPLSIRB Redundancy and Traffic Tromboning
- VPLS and VRRP
- Traffic tromboning
- Hierarchical VPLS
- H-VPLS Model with LDP Signaling
- H-VPLS Models with BGP for Autodiscovery and Signaling
- Model A: RT filtering
- Model B: Site-ID (Site-Range) filtering
- 8. Ethernet VPN
- EVPN with MPLS Transport
- EVPN Versus VPLS
- EVPN versus VPLSsignaling protocols
- EVPN versus VPLSMAC address learning
- EVPN versus VPLSCE Multihoming
- EVPN versus VPLSLayer 2 to Layer 3 coupling
- EVPN Implementations
- EVPNThis Books Topology
- BGP EVPN Address Family
- EVPN with MPLS TransportJunos Configuration
- EVPN MPLSInclusive Tunnel and Autodiscovery
- EVPN with MPLS TransportAdvertising MACs
- EVPN with MPLS TransportIntra-VLAN Bridging
- EVPN with MPLS TransportInter-VLAN Forwarding
- EVPN IRBJunos configuration
- EVPN IRBnew routes advertised
- EVPN IRBstrong L2 to L3 coupling
- EVPN IRB in action
- EVPNVM mobility
- EVPN with MPLS TransportAll-Active Multihoming
- EVPN all-activeJunos configuration
- EVPN all-activechange to existing routes
- EVPN all-activenew routes
- EVPN all-activealiasing label
- EVPN all-activesplit horizon label
- EVPN virtual gateway
- EVPN Versus VPLS
- Ethernet VPN with VXLAN Transport
- Data Center Challenges
- Data center transport challenge
- Data center multitenancy challenge
- VXLAN
- EVPN with VXLAN TransportMotivation
- EVPN with VXLAN TransportForwarding Plane
- EVPN with VXLAN TransportJunos Configuration
- EVPN with VXLAN TransportSignaling
- Data Center Challenges
- Provider Backbone Bridging EVPN
- Introduction to PBB
- PBB EVPN in a Nutshell
- PBB EVPN Implementations
- PBB EVPN in Action
- PBB EVPNIM signaling and BUM traffic forwarding
- PBB EVPNB-MAC signaling and known unicast traffic forwarding
- PBB EVPN Configuration
- PBB EVPNJunos configuration
- PBB EVPNIOS XR configuration
- PBB EVPN Signaling
- EVPN with MPLS Transport
- 9. Inter-Domain MPLS Services
- Inter-Domain Architectures
- This Chapters Example Topology
- Inter-AS Flavors
- Inter-AS Option A
- Inter-AS Option B
- Inter-AS Option BSignaling and Forwarding
- Inter-AS Option Bsignaling and forwardingJunos plane
- Inter-AS Option BforwardingIOS XR plane
- Inter-AS Option BJunos Configuration
- Inter-AS Option BJunos and IOS XR interoperability
- Inter-AS Option Boptimizing the control plane
- Inter-AS Option BIOS XR Configuration
- Inter-AS Option B with Local VRF
- Route summarization with local VRFJunos
- Route summarization with local VRFIOS XR
- Inter-AS Option B with local VRFimplementation details
- Inter-AS Option BSignaling and Forwarding
- Inter-AS Option C
- BGP Sessions in Inter-AS Option C
- Inter-AS Option CSignaling and Forwarding
- Inter-AS Option Csignaling and forwardingJunos plane
- Inter-AS Option Csignaling and forwardingIOS XR plane
- Inter-AS Option CConfiguration
- Inter-AS Option CP-router configuration
- Inter-AS Option CPE configuration
- Inter-AS Option CRR configuration
- Inter-AS Option CASBR configuration
- Carrier Supporting Carrier
- Inter-Domain RSVP-TE LSPs
- Inter-Domain Architectures
- 10. Underlay and Overlay Architectures
- Overlays and Underlays
- Overlay and Underlay Are Relative Concepts
- Other Fundamental Concepts
- Multiforwarder Network Devices
- Single-Chassis Network DevicesForwarding Plane
- Single-Chassis Network DevicesControl Plane
- Single-chassis network devicesinternal control traffic
- Single-chassis multiforwarder devicesexternal control traffic
- Multichassis Network Devices
- Legacy Data Center Networking
- The Challenges of L2 Bridged Networks
- Revolution against the VLAN tyranny
- Bandwidth scaling
- Control-plane scaling
- Network stability and resiliency
- Underlays in Modern Data Centers
- Overlays in Modern Data Centers
- The Challenges of L2 Bridged Networks
- Data Center UnderlaysFabrics
- IP FabricsForwarding Plane
- Edge forwarders
- Leaf-and-spine IP switches
- Three-stage IP fabrics
- Five-stage IP fabrics
- IP Fabrics with Distributed-Only Control Plane
- IP Fabrics with Hybrid Control Plane
- IP FabricsForwarding Plane
- Network Virtualization Overlay
- Compute Controllers
- Virtual Network Controllers
- NVOTransport of Control Packets
- NVOAgents
- Overlays and Underlays
- 11. Network Virtualization Overlays
- OpenContrail in a Nutshell
- OpenContrail Controllers
- Compute, Gateway, and Service Nodes
- Compute nodes
- Gateway nodes
- Service nodes
- ToR service nodes
- Case Study: A Private Cloud
- vRouter-VM Link Addressing
- Initializing vNICsXMPP as a DHCP-Like Protocol
- Interconnecting VMsXMPP as a BGP-Like Protocol
- vRouter subscribes to a VRF
- vRouter advertises VMs host IP route to the control nodes
- Control nodes reflect VMs route to other vRouters
- Interconnecting Subscribers to Cloud VMs
- DC-GW configurationMPLS-over-GRE
- Communication Between Virtual Networks
- Network Virtualization Overlay: L2_L3 Mode
- VXLAN Refresher
- VXLAN use cases
- Intrasubnet (L2) and Intersubnet (L3) Traffic
- Interconnecting VMsIntraSubnet Traffic with VXLAN
- BUM traffic flooding
- vRouter and Gateway NodesL2_L3 Mode
- VXLAN Refresher
- Integrating Legacy L2 World into the NVO
- L2 Gateways and OVSDB
- ToR Service Nodes
- Binding a Bare-Metal Server to the Overlay
- XMPP signaling
- OVSDB signaling
- MAC Learning with OVSDB
- Bare-Metal Servers and OVSDBthe Forwarding Plane
- OpenContrail in a Nutshell
- 12. Network Function Virtualization
- NFV in the Software-Defined Networking Era
- Virtual or Physical?
- Intel x86 processors
- Custom ASICs
- Merchant ASICs
- Applicability of NFV to Service Providers
- Virtual or Physical?
- NFV Practical Use Case
- NFV Forwarding Plane
- NFVVRF Layout Models
- Legacy VRF LayoutTransit VN Model
- Transit VN modelconfiguration
- Transit VN modelroutes and next hops
- Modern VRF LayoutTwo-VN Model
- Two-VN modelconfiguration
- Two-VN modelroutes and next hops
- Legacy VRF LayoutTransit VN Model
- NFVLong Version of the Life of a Packet
- NFV Control Plane
- NFV Scaling and Redundancy
- NFV Scaling and RedundancyLoad Balancing
- NFVload-balancing assessment
- NFV Scaling and RedundancyLoad Balancing
- Service Instance Flavors
- In-Network Service Instances
- In-Network-NAT Service Instances
- Transparent Service Instances
- Network Service Function Outside a VM or Container
- NFV in the Software-Defined Networking Era
- 13. Introduction to Traffic Engineering
- TE Protocols
- TE LSP Types
- TE Information Distribution
- TE Distribution via OSPF
- OSPF Router ID
- OSPF TE Extensions
- OSPF TE Opaque LSAs
- TE Distribution via IS-IS
- The TED
- TE Distribution via OSPF
- TE Static Constraints
- TE Metric
- Link ColoringAdministrative Group
- Extended Administrative Groups
- Shared Risk Link Group
- SRLG use case 1Path Protection
- SRLG use case 2Facility (link) Protection
- Egress Peer Engineering
- EPE Based on BGP-LU
- EPE based on BGP-LUconfiguration
- EPE Based on BGP-LU
- TE Protocols
- 14. TE Bandwidth Reservations
- TE Static Bandwidth Constraints
- TE Bandwidth Attributes
- Maximum bandwidth (4 octets)
- Maximum reservable bandwidth (4 octets)
- Unreserved bandwidth per priority level (8 x 4 octets)
- Default TE Interface Bandwidth
- Basic RSVP-TE Bandwidth Reservation
- Explicit TE interface reservable bandwidth
- LSP Priorities and Preemption
- Setup and Hold priorities
- Results of LSP preemption and resignaling
- Traffic Metering and Policing
- TE Bandwidth Attributes
- TE Auto-Bandwidth
- Introduction to Auto-Bandwidth
- Collection (sampling) interval
- Application (adjustment) interval
- Application (adjustment) threshold
- Overflow detection
- Underflow detection
- Requested bandwidth minimum and maximum limits
- Auto-Bandwidth in Action
- Auto-Bandwidth Configuration
- Auto-Bandwidth Deployment Considerations
- Introduction to Auto-Bandwidth
- Dynamic Ingress LSP Splitting/Merging
- Dynamic Ingress LSP Splitting/MergingConfiguration
- Dynamic Ingress LSP Splitting/Merging in Action
- Dynamic Ingress LSP Splitting/Merging and Auto-Bandwidth
- TE Static Bandwidth Constraints
- 15. Centralized Traffic Engineering
- BGP Link-State
- PCEP
- PCE Implementations
- Interaction Between PCE and PCC
- PCE-Initiated RSVP-TE LSPs
- PCC-Initiated RSVP-TE LSPs
- PCC Label-Switched Path Signaling
- RSVP-TE LSPs
- SPRING (IGP) TE LSPs
- BGP LSPs
- PCC Configuration
- PCC Templates for PCE-Initiated LSPs
- Delegating PCC-Initiated LSPs to the PCE
- PCE Use Cases
- Extending the Link Attributes Palette
- Other link attributes
- Enhanced LSP Preemption Logic
- Diverse Paths
- Extending the Link Attributes Palette
- 16. Scaling MPLS Transport and Seamless MPLS
- Scaling an IGP Domain
- Scaling an IGPOSPF
- Scaling an IGPIS-IS
- Scaling an IGPMPLS Protocols
- Scaling RSVP-TE
- RSVP-TE Protocol Best Practices
- Intradomain LSP Hierarchy
- Tunneling RSVP-TE LSPs Inside RSVP-TE LSPs
- Tunneling LDP LSPs Inside RSVP-TE LSPs
- LDP tunneling in action
- Tunneling SPRING LSPs Inside RSVP-TE LSPs
- Interdomain Transport Scaling
- Nonhierarchical Interdomain Tunnels
- Hierarchical Interdomain Tunnels (Seamless MPLS)
- Seamless MPLS overview
- Seamless MPLSBGP-LU path selection
- Seamless MPLSBGP-LU configuration on edge routers (PE1, PE2, PE3, and PE4)
- Seamless MPLSBGP-LU configuration on border routers (ASBRs and ABRs)
- Seamless MPLSIPv4 intradomain connectivity between PEs
- Services in Seamless MPLS architecture
- Multiprotocol BGP policies
- Seamless MPLSend-to-end forwarding path
- IGP-Less Transport Scaling
- BGP-LU Hierarchy
- BGP-LU Hierarchycontrol plane
- BGP-LU hierarchyforwarding plane
- BGP-LU hierarchyconfiguration
- MPLS-Capable Servers and Static Labels
- Static label stitching
- BGP-LU Hierarchy
- Scaling an IGP Domain
- 17. Scaling MPLS Services
- Hierarchical L3VPN
- Default Route L3VPN Model
- Detailed routing model
- Achieving end-to-end connectivity in the Junos plane
- Achieving end-to-end connectivity in the IOS XR plane
- MPLS forwarding in the Junos plane
- Handling network failures by using Hierarchical L3VPN
- Default Route with Local Routes L3VPN Model
- Pseudowire Head-End Termination L3VPN Model
- Default Route L3VPN Model
- Hierarchical L3VPN
- 18. Transit Fast Restoration Based on the IGP
- Fast Restoration Concepts
- Ingress/Transit/Egress Transport Protection Concepts
- Global Repair Concepts
- Local Repair Concepts
- Loop-Free Alternates
- Per-Link LFA
- Per-Prefix LFA
- Per-prefix LFA in IOS XR
- Per-prefix LFA in Junos
- Extending LFA Backup Coverage
- LFA with LDP Backup Tunnels (Remote LFA)
- RLFA theory of operation
- RLFA configuration
- RLFA in action
- RLFA with RSVP-TE Backup Tunnels
- Topology Independent Fast ReRoute
- Modifying the default LFA selection algorithm
- Modifying the default LFA selection algorithm in Junos
- Modifying the default LFA selection algorithm in IOS XR
- Topology-Independent LFA
- TI-LFA with direct repair node
- TI-LFA with PQ repair node
- TI-LFA with direct LFA (DLFA) repair
- LFA with LDP Backup Tunnels (Remote LFA)
- Maximally Redundant Trees
- Fast Restoration Concepts
- 19. Transit Fast Restoration Based on RSVP-TE
- RSVP-TE Path Protection
- RSVP-TE Facility (Node-Link) Protection
- Manual Link Protection Bypass
- Manual link protection bypass in Junos: P5P3 link, PE4--->PE2 LSP
- Manual link protection bypass in IOS XR: P4P2 link, PE3--->PE2 LSP
- Manual Node-Link Protection Bypass
- Manual node-link protection in IOS XR: P2 node, P4P2 link, PE3--->PE2 LSP
- Manual node-link protection in Junos: P3 node, P5P3 link, PE3--->PE2 LSP
- Facility Protection in Action
- Manual node-link protection in Junos: P3 node, P5P3 link, PE3--->PE2 LSP
- Manual node-link protection in IOS XR: P3 node, P5P3 link, PE3--->PE2 LSP
- Automatic Protection Bypass
- Manual Link Protection Bypass
- RSVP-TE One-to-One Protection
- Transit Fast-Restoration Summary
- 20. FIB Optimization for Fast Restoration
- Next-Hop Hierarchy
- Topology used in Chapter 20 and in Chapter 21
- Flat Next-Hop Structures
- Indirect Next Hop (Junos)
- Flat Next-Hop Structures
- Chained Composite Next Hop (Junos)
- BGP PIC Core (IOS XR)
- Topology used in Chapter 20 and in Chapter 21
- Preinstalled Next Hops to Multiple Egress PEs (PIC Edge)
- Active/Standby Next Hops to Egress PEs
- Active/Active Next Hops to Egress PEs
- BGP Best External Failover
- Next-Hop Hierarchy
- 21. Egress Service Fast Restoration
- Service Mirroring Protection Concepts
- Combined Protector/Backup Egress PE Model
- Separate (Centralized) Protector and Backup Egress PE Model
- Context-ID Advertisement Methods
- Stub-Alias
- Stub-Proxy
- L3VPN PECE Egress Link Protection
- Layer 2 VPN Service Mirroring
- BGP-Based L2VPN Service Mirroring
- LDP-Based L2VPN Service Mirroring
- Egress Peer Engineering Protection
- Protection in Seamless MPLS Architecture
- Border Link (ASBR-ASBR) Protection
- Border Node (ABR or ASBR) Protection
- Summary
- Index