LLM Design Patterns. A Practical Guide to Building Robust and Efficient AI Systems - Helion

Tytuł oryginału: LLM Design Patterns. A Practical Guide to Building Robust and Efficient AI Systems
ISBN: 9781836207023
stron: 534, Format: ebook
Księgarnia: Helion
Cena książki: 149,00 zł
Książka będzie dostępna od czerwca 2025
This practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment.
You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems.
By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values.
Zobacz także:
- Biologika Sukcesji Pokoleniowej. Sezon 3. Konflikty na terytorium 124,17 zł, (14,90 zł -88%)
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Podręcznik startupu. Budowa wielkiej firmy krok po kroku 93,13 zł, (14,90 zł -84%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Scrum. O zwinnym zarz 78,42 zł, (14,90 zł -81%)
Spis treści
LLM Design Patterns. A Practical Guide to Building Robust and Efficient AI Systems eBook -- spis treści
- 1. Introduction to LLM Design Patterns
- 2. Data Cleaning for LLM Training
- 3. Data Augmentation
- 4. Handling Large Datasets for LLM Training
- 5. Data Versioning
- 6. Dataset Annotation and Labeling
- 7. Training Pipeline
- 8. Hyperparameter Tuning
- 9. Regularization
- 10. Checkpointing and Recovery
- 11. Fine-Tuning
- 12. Model Pruning
- 13. Quantization
- 14. Evaluation Metrics
- 15. Cross-Validation
- 16. Interpretability
- 17. Fairness and Bias Detection
- 18. Adversarial Robustness
- 19. Reinforcement Learning from Human Feedback
- 20. Chain-of-Thought Prompting
- 21. Tree-of-Thoughts Prompting
- 22. Reasoning and Acting
- 23. Reasoning WithOut Observation
- 24. Reflection Techniques
- 25. Automatic Multi-Step Reasoning and Tool Use
- 26. Retrieval-Augmented Generation
- 27. Graph-Based RAG
- 28. Advanced RAG
- 29. Evaluating RAG Systems
- 30. Agentic Patterns