reklama - zainteresowany?

Hands-On Generative AI with Transformers and Diffusion Models - Helion

Hands-On Generative AI with Transformers and Diffusion Models
ebook
Autor: Omar Sanseviero, Pedro Cuenca, Apolin
ISBN: 9781098149208
stron: 418, Format: ebook
Data wydania: 2024-11-22
Księgarnia: Helion

Cena książki: 254,15 zł (poprzednio: 299,00 zł)
Oszczędzasz: 15% (-44,85 zł)

Dodaj do koszyka Hands-On Generative AI with Transformers and Diffusion Models

Learn to use generative AI techniques to create novel text, images, audio, and even music with this practical, hands-on book. Readers will understand how state-of-the-art generative models work, how to fine-tune and adapt them to their needs, and how to combine existing building blocks to create new models and creative applications in different domains.

This go-to book introduces theoretical concepts followed by guided practical applications, with extensive code samples and easy-to-understand illustrations. You'll learn how to use open source libraries to utilize transformers and diffusion models, conduct code exploration, and study several existing projects to help guide your work.

  • Build and customize models that can generate text and images
  • Explore trade-offs between using a pretrained model and fine-tuning your own model
  • Create and utilize models that can generate, edit, and modify images in any style
  • Customize transformers and diffusion models for multiple creative purposes
  • Train models that can reflect your own unique style

Dodaj do koszyka Hands-On Generative AI with Transformers and Diffusion Models

 

Osoby które kupowały "Hands-On Generative AI with Transformers and Diffusion Models", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka Hands-On Generative AI with Transformers and Diffusion Models

Spis treści

Hands-On Generative AI with Transformers and Diffusion Models eBook -- spis treści

  • Preface
    • Who Should Read This Book
    • Prerequisites
    • What You Will Learn
    • How to Read This Book
    • Software and Hardware Requirements
    • Conventions Used in This Book
    • Using Code Examples
    • How to Contact Us
    • State of the Art: A Moving Target
    • Acknowledgments
      • Jonathan
      • Apolinário
      • Pedro
      • Omar
  • I. Leveraging Open Models
  • 1. An Introduction to Generative Media
    • Generating Images
    • Generating Text
    • Generating Sound Clips
    • Ethical and Societal Implications
    • Where Weve Been and Where Things Stand
    • How Are Generative AI Models Created?
    • Summary
  • 2. Transformers
    • A Language Model in Action
      • Tokenizing Text
      • Predicting Probabilities
      • Generating Text
      • Zero-Shot Generalization
      • Few-Shot Generalization
    • A Transformer Block
    • Transformer Model Genealogy
      • Sequence-to-Sequence Tasks
      • Encoder-Only Models
    • The Power of Pretraining
    • Transformers Recap
      • Limitations
      • Beyond Text
    • Project Time: Using LMs to Generate Text
    • Summary
    • Exercises
    • Challenges
    • References
  • 3. Compressing and Representing Information
    • AutoEncoders
      • Preparing the Data
      • Modeling the Encoder
      • Decoder
      • Training
      • Exploring the Latent Space
      • Visualizing the Latent Space
    • Variational AutoEncoders
      • VAE Encoders and Decoders
      • Sampling from the Encoder Distribution
      • Training the VAE
      • VAEs for Generative Modeling
    • CLIP
      • Contrastive Loss
      • Using CLIP, Step-by-Step
      • Zero-Shot Image Classification with CLIP
      • Zero-Shot Image-Classification Pipeline
      • CLIP Use Cases
    • Alternatives to CLIP
    • Project Time: Semantic Image Search
    • Summary
    • Exercises
    • Challenges
    • References
  • 4. Diffusion Models
    • The Key Insight: Iterative Refinement
    • Training a Diffusion Model
      • The Data
      • Adding Noise
      • The UNet
      • Training
      • Sampling
      • Evaluation
    • In Depth: Noise Schedules
      • Why Add Noise?
      • Starting Simple
      • The Math
      • Effect of Input Resolution and Scaling
    • In Depth: UNets and Alternatives
      • A Simple UNet
      • Improving the UNet
      • Alternative Architectures
    • In Depth: Diffusion Objectives
    • Project Time: Train Your Diffusion Model
    • Summary
    • Exercises
    • Challenges
    • References
  • 5. Stable Diffusion and Conditional Generation
    • Adding Control: Conditional Diffusion Models
      • Preparing the Data
      • Creating a Class-Conditioned Model
      • Training the Model
      • Sampling
    • Improving Efficiency: Latent Diffusion
    • Stable Diffusion: Components in Depth
      • The Text Encoder
      • The Variational AutoEncoder
      • The UNet
      • Stable Diffusion XL
      • FLUX, SD3, and Video
      • Classifier-Free Guidance
    • Putting It All Together: Annotated Sampling Loop
    • Open Data, Open Models
      • Challenges and the Sunset of LAION-5B
      • Alternatives
      • Fair and Commercial Use
    • Project Time: Build an Interactive ML Demo with Gradio
    • Summary
    • Exercises
    • Challenge
    • References
  • II. Transfer Learning for Generative Models
  • 6. Fine-Tuning Language Models
    • Classifying Text
      • Identify a Dataset
      • Define Which Model Type to Use
      • Select a Good Base Model
      • Preprocess the Dataset
      • Define Evaluation Metrics
      • Train the Model
      • Still Relevant?
    • Generating Text
      • Picking the Right Generative Model
      • Training a Generative Model
    • Instructions
    • A Quick Introduction to Adapters
    • A Light Introduction to Quantization
    • Putting It All Together
    • A Deeper Dive into Evaluation
    • Project Time: Retrieval-Augmented Generation
    • Summary
    • Exercises
    • Challenge
    • References
  • 7. Fine-Tuning Stable Diffusion
    • Full Stable Diffusion Fine-Tuning
      • Preparing the Dataset
      • Fine-Tuning the Model
      • Inference
    • DreamBooth
      • Preparing the Dataset
      • Prior Preservation
      • DreamBoothing the Model
      • Inference
    • Training LoRAs
    • Giving Stable Diffusion New Capabilities
      • Inpainting
      • Additional Inputs for Special Conditionings
    • Project Time: Train an SDXL DreamBooth LoRA by Yourself
    • Summary
    • Exercises
    • Challenge
    • References
  • III. Going Further
  • 8. Creative Applications of Text-to-Image Models
    • Image to Image
    • Inpainting
    • Prompt Weighting and Image Editing
      • Prompt Weighting and Merging
      • Editing Diffusion Images with Semantic Guidance
    • Real Image Editing via Inversion
      • Editing with LEDITS++
      • Real Image Editing via Instruction Fine-Tuning
    • ControlNet
    • Image Prompting and Image Variations
      • Image Variations
      • Image Prompting
        • Style transfer
        • Additional controls
    • Project Time: Your Creative Canvas
    • Summary
    • Exercises
    • References
  • 9. Generating Audio
    • Audio Data
      • Waveforms
      • Spectrograms
    • Speech to Text with Transformer-Based Architectures
      • Encoder-Based Techniques
      • Encoder-Decoder Techniques
      • From Model to Pipeline
      • Evaluation
    • From Text to Speech to Generative Audio
      • Generating Audio with Sequence-to-Sequence Models
      • Going Beyond Speech with Bark
      • AudioLM and MusicLM
      • AudioGen and MusicGen
      • Audio Diffusion and Riffusion
      • Dance Diffusion
      • More on Diffusion Models for Generative Audio
    • Evaluating Audio-Generation Systems
    • Whats Next?
    • Project Time: End-to-End Conversational System
    • Summary
    • Exercises
    • Challenges
    • References
  • 10. Rapidly Advancing Areas in Generative AI
    • Preference Optimization
    • Long Contexts
    • Mixture of Experts
    • Optimizations and Quantizations
    • Data
    • One Model to Rule Them All
    • Computer Vision
    • 3D Computer Vision
    • Video Generation
    • Multimodality
    • Community
  • A. Open Source Tools
    • The Hugging Face Stack
    • Data
    • Wrappers
    • Local Inference
    • Deployment Tools
  • B. LLM Memory Requirements
    • Inference Memory Requirements
    • Training Memory Requirements
    • Further Reading
  • C. End-to-End Retrieval-Augmented Generation
    • Processing the Data
    • Embedding the Documents
    • Retrieval
    • Generation
    • Production-Level RAG
  • Index

Dodaj do koszyka Hands-On Generative AI with Transformers and Diffusion Models

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2024 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.