reklama - zainteresowany?

Developing Apps with GPT-4 and ChatGPT. 2nd Edition - Helion

Developing Apps with GPT-4 and ChatGPT. 2nd Edition
ebook
Autor: Olivier Caelen, Marie-Alice Blete
ISBN: 9781098168063
stron: 272, Format: ebook
Data wydania: 2024-07-10
Księgarnia: Helion

Cena książki: 144,18 zł (poprzednio: 208,96 zł)
Oszczędzasz: 31% (-64,78 zł)

Dodaj do koszyka Developing Apps with GPT-4 and ChatGPT. 2nd Edition

This book provides an ideal guide for Python developers who want to learn how to build applications with large language models. Authors Olivier Caelen and Marie-Alice Blete cover the main features and benefits of GPT-4 and GPT-3.5 models and explain how they work. You'll also get a step-by-step guide for developing applications using the OpenAI Python library, including text generation, Q&A, and smart assistants.

Written in clear and concise language, Developing Apps with GPT-4 and ChatGPT includes easy-to-follow examples to help you understand and apply the concepts to your projects. Python code examples are available in a GitHub repository, and the book includes a glossary of key terms. Ready to harness the power of large language models in your applications? This book is a must.

You'll learn:

  • Fundamentals and benefits of GPT-4 and GPT-3.5 models, including the main features and how they work
  • How to integrate these models into Python-based applications, leveraging natural language processing capabilities and overcoming specific LLM-related challenges
  • Examples of applications demonstrating the OpenAI API in Python for tasks including text generation, question answering, content summarization, classification, and more
  • Advanced LLM topics such as prompt engineering, fine-tuning models for specific tasks, RAG, plug-ins, LangChain, LlamaIndex, GPTs, and assistants

Olivier Caelen is a machine learning researcher at Worldline and teaches machine learning courses at the University of Brussels.

Marie-Alice Blete, a software architect and data engineer in Worldline's R&D department, is interested in performance and latency issues associated with AI solutions.

Dodaj do koszyka Developing Apps with GPT-4 and ChatGPT. 2nd Edition

 

Osoby które kupowały "Developing Apps with GPT-4 and ChatGPT. 2nd Edition", wybierały także:

  • Cisco CCNA 200-301. Kurs video. Administrowanie bezpieczeÅ„stwem sieci. Część 3
  • Cisco CCNA 200-301. Kurs video. Administrowanie urzÄ…dzeniami Cisco. Część 2
  • Cisco CCNA 200-301. Kurs video. Podstawy sieci komputerowych i konfiguracji. Część 1
  • Impact of P2P and Free Distribution on Book Sales
  • Cisco CCNP Enterprise 350-401 ENCOR. Kurs video. Programowanie i automatyzacja sieci

Dodaj do koszyka Developing Apps with GPT-4 and ChatGPT. 2nd Edition

Spis treści

Developing Apps with GPT-4 and ChatGPT. 2nd Edition eBook -- spis treści

  • Preface
    • Conventions Used in This Book
    • Using Code Examples
    • OReilly Online Learning
    • How to Contact Us
    • Acknowledgments
  • 1. GPT-4 and ChatGPT Essentials
    • Introducing Large Language Models
      • Exploring the Foundations of Language Models and NLP
      • Understanding the Transformer Architecture and Its Role in LLMs
      • Demystifying the Tokenization and Prediction Steps in GPT Models
      • Integrating Vision into an LLM
    • A Brief History: From GPT-1 to GPT-4
      • GPT-1
      • GPT-2
      • GPT-3
      • From GPT-3 to InstructGPT
      • GPT-3.5, ChatGPT, Codex
      • GPT-4
      • The Evolution of AI Toward Multimodality
        • Image generation with DALL-E
        • Voice recognition and synthesis
        • Video generation with Sora
    • LLM Use Cases and Example Products
      • Be My Eyes
      • Morgan Stanley
      • Khan Academy
      • Duolingo
      • Yabble
      • Waymark
      • Inworld AI
    • Beware of AI Hallucinations: Limitations and Considerations
    • Unlocking GPT Potential with Advanced Features
    • Summary
  • 2. A Deep Dive into the OpenAI API
    • Essential Concepts
    • Models Available in the OpenAI API
      • GPT Base
      • InstructGPT (Legacy)
      • GPT-3.5
      • GPT-4
    • Trying GPT Models with the OpenAI Playground
    • Getting Started: The OpenAI Python Library
      • OpenAI Access and API Key
      • Hello World Example
    • Using Chat Completion Models
      • Input Options for the Chat Completion Endpoint
        • Required input parameters
        • Length of conversations and tokens
        • Additional optional parameters
      • Playing with temperature and top_p
      • Output Result Format for the Chat Completion Endpoint
      • Vision
      • Requiring a JSON Output
        • JSON output format
        • Tools and functions
    • Using Other Text Completion Models
      • Input Options for the Text Completion Endpoint
        • Main input parameters
        • Length of prompts and tokens
        • Additional optional parameters
      • Output Result Format for the Text Completion Endpoint
    • Considerations
      • Pricing and Token Limitations
      • Security and Privacy: Caution!
    • Other OpenAI APIs and Functionalities
      • Embeddings
      • Moderation
      • Text-to-Speech
      • Speech-to-Text
      • Images API
        • Image generations
        • Image edits
        • Image variations
    • Summary (and Cheat Sheet)
  • 3. Navigating LLM-Powered Applications: Capabilities and Challenges
    • App Development Overview
      • API Key Management
        • The user provides the API key
        • You provide the API key
      • Security and Data Privacy
    • Software Architecture Design Principles
    • Integrating LLM Capabilities into Your Projects
      • Conversational Capabilities
      • Language Processing Capabilities
      • Human-Computer Interaction Capabilities
      • Combining Capabilities
    • Example Projects
      • Project 1: Building a News Generator SolutionLanguage Processing
      • Project 2: Summarizing YouTube VideosLanguage Processing
      • Project 3: Creating an Expert for Zelda BOTWLanguage Processing and Conversations
        • Redis
        • Information retrieval service
        • Intent service
        • Response service
        • Putting it all together
      • Project 4: Having a Personal AssistantHuman-Computer Interface
        • Speech-to-text with Whisper
        • Assistant with GPT-3.5 Turbo
        • UI with Gradio
        • Demonstration
      • Project 5: Organizing DocumentsLanguage Processing
      • Project 6: Analyzing SentimentsLanguage Processing
        • Evaluation of classification model
    • Cost Management
    • LLM-Powered App Vulnerabilities
      • Analyzing Inputs and Outputs
      • The Inevitability of Prompt Injection
    • Working with an External API
      • Handling Errors and Unexpected Latency Issues
      • Rate Limits
      • Improving Responsiveness and User Experience
        • Streaming
        • Asynchronous programming
        • Other design strategies
    • Summary
  • 4. Advanced LLM Integration Strategies with OpenAI
    • Prompt Engineering
      • Designing Effective Prompts with Roles, Contexts, and Tasks
        • The context
        • The task
        • The role
      • Thinking Step by Step
      • Implementing Few-Shot Learning
      • Iterative Refinement with User Feedback
      • Improving Prompt Effectiveness
        • Instruct the model to ask more questions
        • Format the output
        • Repeat the instructions
        • Use negative prompts
        • Add length constraints
        • Prompt chaining
        • Shadow prompting
    • Fine-Tuning
      • Getting Started
        • Adapting GPT models for domain-specific needs
        • Fine-tuning versus few-shot learning
      • Fine-Tuning with the OpenAI API
        • Preparing your data
        • Making your data available
        • Creating a fine-tuned model
        • Listing fine-tuning jobs
        • Canceling a fine-tuning job
        • Getting status updates for a fine-tuning job
        • Getting info about a fine-tuning job
      • Fine-Tuning with the Web Interface of OpenAI
      • Fine-Tuning Applications
        • Legal document analysis
        • Automated code review
        • Financial document summarization
        • Technical document translation
        • News article generation for niche topics
      • Generating and Fine-Tuning Synthetic Data for an Email Marketing Campaign
        • Creating a synthetic dataset
        • Fine-tuning a model with the synthetic dataset
        • Evaluating the fine-tuned model
        • Using the fine-tuned model for text completion
      • Cost of Fine-Tuning
    • RAG
      • Naive RAG
      • Advanced RAG
        • Preprocess the users query
        • Preprocess the knowledge base
        • Improving search
        • Postprocessing
      • RAG Limitations
    • Choosing Between Strategies
      • Strategy Comparison
      • Evaluations
    • From a Standard Application to an LLM-Powered Solution
      • Prompt Sensitivity
      • Nondeterminism
      • Hallucinations
    • Summary
  • 5. Advancing LLM Capabilities with Frameworks, Plug-Ins, and More
    • The LangChain Framework
      • LangChain Libraries
      • Dynamic Prompts
      • Agents and Tools
      • Memory
      • Embeddings
    • The LlamaIndex Framework
      • Demonstration: RAG in 10 Lines of Code
      • LlamaIndex Principles
      • Customization
    • GPT-4 Plug-Ins
      • Overview
      • The API
      • The Plug-In Manifest
      • The OpenAPI Specification
      • Descriptions
    • GPTs
    • The Assistant API
      • Creating an Assistant API
      • Managing a Conversation with Your Assistant API
      • Function Calling
      • The Assistants on the OpenAI Web Platform
        • Testing an assistant on the OpenAI website
        • Creating an assistant on the OpenAI website
    • Summary
  • 6. Putting It All Together
    • Key Takeaways
    • Putting It All Together: The Assistant Use Case
      • Step 1: Ideation
      • Step 2: Defining the Requirements
      • Step 3: Building a Prototype
      • Step 4: Improving, Iterating
      • Step 5: Making the Solution Robust
    • Lessons Learned
  • Glossary of Key Terms
  • A. Tools, Libraries, and Frameworks
  • Index

Dodaj do koszyka Developing Apps with GPT-4 and ChatGPT. 2nd Edition

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.