Deep learning z TensorFlow 2 i Keras dla zaawansowanych. Sieci GAN i VAE, deep RL, uczenie nienadzorowane, wykrywanie i segmentacja obiekt - Helion
Tytuł oryginału: Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more, 2nd Edition
TÅ‚umaczenie: Magdalena Tkacz
ISBN: 978-83-283-8883-3
stron: 489, Format: 168x237, okładka: mi
Data wydania: 2022-04-01
Księgarnia: Helion
Cena książki: 53,40 zł (poprzednio: 89,00 zł)
Oszczędzasz: 40% (-35,60 zł)
Osoby które kupowały "Deep learning z TensorFlow 2 i Keras dla zaawansowanych. Sieci GAN i VAE, deep RL, uczenie nienadzorowane, wykrywanie i segmentacja obiekt", wybierały także:
- Natural Language Processing with PyTorch. Build Intelligent Language Applications Using Deep Learning 332,22 zł, (29,90 zł -91%)
- TensorFlow for Deep Learning. From Linear Regression to Reinforcement Learning 249,17 zł, (29,90 zł -88%)
- AI and Machine Learning for Coders 230,00 zł, (29,90 zł -87%)
- Kubeflow Operations Guide 213,57 zł, (29,90 zł -86%)
- Introducing MLOps 213,57 zł, (29,90 zł -86%)
Spis treści
Deep learning z TensorFlow 2 i Keras dla zaawansowanych. Sieci GAN i VAE, deep RL, uczenie nienadzorowane, wykrywanie i segmentacja obiektów i nie tylko. Wydanie II -- spis treści
O autorze
O recenzencie
Przedmowa
Rozdział 1. Wprowadzenie do uczenia głębokiego z Keras
- 1.1. Dlaczego Keras jest idealną biblioteką do uczenia głębokiego?
- Instalowanie biblioteki Keras i TensorFlow
- 1.2. Sieci MLP, CNN i RNN
- Różnice miÄ™dzy MLP, CNN i RNN
- 1.3. Perceptron wielowarstwowy (MLP)
- Zbiór danych MNIST
- Model klasyfikatora cyfr MNIST
- Budowanie modelu przy użyciu MLP i Keras
- Regularyzacja
- Funkcja aktywacji i funkcja straty
- Optymalizacja
- Ocena wydajności
- Podsumowanie modelu MLP
- 1.4. Splotowa (konwolucyjna) sieć neuronowa
- Splot
- Operacje Å‚Ä…czenia
- Ocena wydajności i podsumowanie modelu
- 1.5. Rekurencyjna sieć neuronowa
- 1.6. Wnioski
- 1.7. Odwołania
Rozdział 2. Głębokie sieci neuronowe
- 2.1. Funkcyjne API Keras
- Tworzenie modelu o dwóch wejÅ›ciach i jednym wyjÅ›ciu
- 2.2. Głęboka sieć resztkowa (ResNet)
- 2.3. ResNet v2
- 2.4. Gęsto połączona sieć splotowa (DenseNet)
- Budowa stuwarstwowej sieci DenseNet-BC dla CIFAR10
- 2.5. Podsumowanie
- 2.6. Bibliografia
Rozdział 3. Sieci autokodujące
- 3.1. Zasada działania sieci autokodującej
- 3.2. Budowanie sieci autokodujÄ…cej za pomocÄ… Keras
- 3.3. AutokodujÄ…ce sieci odszumiajÄ…ce (DAE)
- 3.4. Automatyczne kolorowanie z użyciem autokodera
- 3.5. Podsumowanie
- 3.6. Bibliografia
RozdziaÅ‚ 4. GenerujÄ…ce sieci wspóÅ‚zawodniczÄ…ce
- 4.1. GAN - informacje wprowadzajÄ…ce
- Podstawy GAN
- 4.2. Implementacja DCGAN w Keras
- 4.3. Warunkowe sieci GAN
- 4.4. Podsumowanie
- 4.5. Bibliografia
Rozdział 5. Ulepszone sieci GAN
- 5.1. Sieć GAN Wassersteina
- Funkcje odległości
- Funkcja odległości w GAN
- Wykorzystanie funkcji straty Wassersteina
- Implementacja WGAN przy użyciu Keras
- 5.2. GAN z metodÄ… najmniejszych kwadratów (LSGAN)
- 5.3. Pomocniczy klasyfikator GAN (ACGAN)
- 5.4. Podsumowanie
- 5.5. Bibliografia
Rozdział 6. Rozplątane reprezentacje w GAN
- 6.1. RozplÄ…tane reprezentacje
- 6.2. Sieć InfoGAN
- Implementacja InfoGAN w Keras
- Ocena rezultatów dziaÅ‚ania generatora sieci InfoGAN
- 6.3. Sieci StackedGAN
- Implementacja sieci StackedGAN w Keras
- Ocena rezultatów dziaÅ‚ania generatora StackedGAN
- 6.4. Podsumowanie
- 6.5. Bibliografia
Rozdział 7. Międzydomenowe GAN
- 7.1. Podstawy sieci CycleGAN
- Model sieci CycleGAN
- Implementacja CycleGAN przy użyciu Keras
- Wyjścia generatora CycleGAN
- CycleGAN na zbiorach danych MNIST i SVHN
- 7.2. Podsumowanie
- 7.3. Bibliografia
Rozdział 8. Wariacyjne sieci autokodujące (VAE)
- 8.1. Podstawy sieci VAE
- Wnioskowanie wariacyjne
- Podstawowe równanie
- Optymalizacja
- Sztuczka z reparametryzacjÄ…
- Testowanie dekodera
- VAE w Keras
- Korzystanie z CNN w sieciach autokodujÄ…cych
- 8.2. Warunkowe VAE (CVAE)
- 8.3. B-VAE - VAE z rozplÄ…tanymi niejawnymi reprezentacjami
- 8.4. Podsumowanie
- 8.5. Bibliografia
Rozdział 9. Uczenie głębokie ze wzmocnieniem
- 9.1. Podstawy uczenia ze wzmocnieniem (RL)
- 9.2. Wartość Q
- 9.3. Przykład Q-uczenia
- Q-uczenie w języku Python
- 9.4. Otoczenie niedeterministyczne
- 9.5. Uczenie z wykorzystaniem różnic czasowych
- Q-uczenie w Open AI Gym
- 9.6. Głęboka sieć Q (DQN)
- Implementacja DQN w Keras
- Q-uczenie podwójnej sieci DQN (DDQN)
- 9.7. Podsumowanie
- 9.8. Bibliografia
Rozdział 10. Strategie w metodach gradientowych
- 10.1. Twierdzenie o gradiencie strategii
- 10.2. Metoda strategii gradientowych Monte Carlo (WZMOCNIENIE)
- 10.3. Metoda WZMOCNIENIE z wartością bazową
- 10.4. Metoda Aktor-Krytyk
- 10.5. Metoda Aktor-Krytyk z przewagÄ… (A2C)
- 10.6. Metody strategii gradientowych przy użyciu Keras
- 10.7. Ocena wydajności metod strategii gradientowej
- 10.8. Podsumowanie
- 10.9. Bibliografia
RozdziaÅ‚ 11. Wykrywanie obiektów
- 11.1. Wykrywanie obiektów
- 11.2. Pole zakotwiczenia
- 11.3. Referencyjne pola zakotwiczenia
- 11.4. Funkcje strat
- 11.5. Architektura modelu SSD
- 11.6. Architektura modelu SSD w Keras
- 11.7. Obiekty SSD w Keras
- 11.8. Model SSD w Keras
- 11.9. Model generatora danych w Keras
- 11.10. PrzykÅ‚adowy zbiór danych
- 11.11. Szkolenie modelu SSD
- 11.12. Algorytm niemaksymalnego tłumienia (NMS)
- 11.13. Walidacja modelu SSD
- 11.14. Podsumowanie
- 11.15. Bibliografia
Rozdział 12. Segmentacja semantyczna
- 12.1. Segmentacja
- 12.2. Sieć do segmentacji semantycznej
- 12.3. Sieć do segmentacji semantycznej w Keras
- 12.4. PrzykÅ‚adowy zbiór danych
- 12.5. Walidacja segmentacji semantycznej
- 12.6. Podsumowanie
- 12.7. Bibliografia
Rozdział 13. Uczenie nienadzorowane z wykorzystaniem informacji wzajemnej
- 13.1. Informacja wzajemna
- 13.2. Informacja wzajemna i entropia
- 13.3. Uczenie nienadzorowane przez maksymalizacjÄ™ informacji wzajemnej o dyskretnych zmiennych losowych
- 13.4. Sieć koderów do grupowania nienadzorowanego
- 13.5. Implementacja nienadzorowanego grupowania w Keras
- 13.6. Walidacja na zbiorze cyfr MNIST
- 13.7. Uczenie nienadzorowane poprzez maksymalizację informacji wzajemnej ciągłych zmiennych losowych
- 13.8. Szacowanie informacji wzajemnej dwuwymiarowego rozkładu Gaussa
- 13.9. Grupowanie nienadzorowane z wykorzystaniem ciągłych zmiennych losowych w Keras
- 13.10. Podsumowanie
- 13.11. Bibliografia