Dealing With Data Pocket Primer. A Comprehensive Guide to Data Handling Techniques - Helion
Tytuł oryginału: Dealing With Data Pocket Primer. A Comprehensive Guide to Data Handling Techniques
ISBN: 9781836649922
stron: 246, Format: ebook
Data wydania: 2024-08-01
Księgarnia: Helion
Cena książki: 149,00 zł
This book introduces the basic concepts of managing data using various computer languages and applications. It is designed as a fast-paced introduction to key features of data management, including statistical concepts, data-related techniques, Pandas, RDBMS, SQL, NLP topics, Matplotlib, and data visualization. The companion files with source code and color figures enhance the learning experience.
Understanding these concepts is crucial for anyone looking to manage data effectively. The book covers the fundamentals of probability and statistics, working with data using Pandas, managing databases with SQL and MySQL, and cleaning data using NLP techniques. It also delves into data visualization, providing practical insights and numerous code samples.
The journey begins with an introduction to probability and statistics, moving on to working with data and Pandas. It then covers RDBMS and SQL, focusing on practical SQL and MySQL usage. The book concludes with NLP, data cleaning, and visualization techniques, equipping readers with a comprehensive understanding of data management.
Osoby które kupowały "Dealing With Data Pocket Primer. A Comprehensive Guide to Data Handling Techniques", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Dealing With Data Pocket Primer. A Comprehensive Guide to Data Handling Techniques eBook -- spis treści
- 1. Introduction to Probability and Statistics
- 2. Working with Data
- 3. Introduction to Pandas
- 4. Introduction to RDBMS and SQL
- 5. Working with SQL and MySQL
- 6. NLP and Data Cleaning
- 7. Data Visualization