Data Quality in the Age of AI. Building a foundation for AI strategy and data culture - Helion

Tytuł oryginału: Data Quality in the Age of AI. Building a foundation for AI strategy and data culture
ISBN: 9781835088562
stron: 40, Format: ebook
Data wydania: 2024-05-24
Księgarnia: Helion
Cena książki: 179,10 zł (poprzednio: 199,00 zł)
Oszczędzasz: 10% (-19,90 zł)
As organizations worldwide seek to revamp their data strategies to leverage AI advancements and benefit from newfound capabilities, data quality emerges as the cornerstone for success. Without high-quality data, even the most advanced AI models falter. Enter Data Quality in the Age of AI, a detailed report that illuminates the crucial role of data quality in shaping effective data strategies.
Packed with actionable insights, this report highlights the critical role of data quality in your overall data strategy. It equips teams and organizations with the knowledge and tools to thrive in the evolving AI landscape, serving as a roadmap for harnessing the power of data quality, enabling them to unlock their data's full potential, leading to improved performance, reduced costs, increased revenue, and informed strategic decisions.
Osoby które kupowały "Data Quality in the Age of AI. Building a foundation for AI strategy and data culture", wybierały także:
- Biologika Sukcesji Pokoleniowej. Sezon 3. Konflikty na terytorium 117,27 zł, (12,90 zł -89%)
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Podręcznik startupu. Budowa wielkiej firmy krok po kroku 92,14 zł, (12,90 zł -86%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Prawa ludzkiej natury 75,88 zł, (12,90 zł -83%)
Spis treści
Data Quality in the Age of AI. Building a foundation for AI strategy and data culture eBook -- spis treści
- 1. Executive Summary
- 2. Introduction: Understanding data quality
- 3. Unlocking AI's potential with Data
- 4. Improving data quality at the source
- 5. Case studies: Positive impact of data quality
- 6. Cultivating a data culture that values quality
- 7. Conclusion: Embracing a quality-driven data culture