Data Algorithms. Recipes for Scaling Up with Hadoop and Spark - Helion

ISBN: 978-14-919-0613-2
stron: 778, Format: ebook
Data wydania: 2015-07-13
Ksi臋garnia: Helion
Cena ksi膮偶ki: 211,65 z艂 (poprzednio: 246,10 z艂)
Oszcz臋dzasz: 14% (-34,45 z艂)
If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects.
Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark.
Topics include:
- Market basket analysis for a large set of transactions
- Data mining algorithms (K-means, KNN, and Naive Bayes)
- Using huge genomic data to sequence DNA and RNA
- Naive Bayes theorem and Markov chains for data and market prediction
- Recommendation algorithms and pairwise document similarity
- Linear regression, Cox regression, and Pearson correlation
- Allelic frequency and mining DNA
- Social network analysis (recommendation systems, counting triangles, sentiment analysis)
Osoby kt贸re kupowa艂y "Data Algorithms. Recipes for Scaling Up with Hadoop and Spark", wybiera艂y tak偶e:
- Python na maturze. Kurs video. Algorytmy i podstawy j 139,00 z艂, (41,70 z艂 -70%)
- 40 algorytm贸w, kt贸re powinien zna膰 ka偶dy programista. Nauka implementacji algorytm贸w w Pythonie 77,00 z艂, (38,50 z艂 -50%)
- Algorytmy dla bystrzak贸w 58,98 z艂, (29,49 z艂 -50%)
- Algorytmy Data Science. Siedmiodniowy przewodnik. Wydanie II 49,00 z艂, (24,50 z艂 -50%)
- Struktury danych i algorytmy w j臋zyku C#. Projektowanie efektywnych aplikacji 69,00 z艂, (34,50 z艂 -50%)