reklama - zainteresowany?

Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more - Helion

Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more
ebook
Autor: Aleksander Molak, Ajit Jaokar
Tytuł oryginału: Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more
ISBN: 9781804611739
stron: 456, Format: ebook
Data wydania: 2023-05-31
Księgarnia: Helion

Cena książki: 149,00 zł

Dodaj do koszyka Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.
You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code.
Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms.
The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.

Dodaj do koszyka Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

 

Osoby które kupowały "Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more", wybierały także:

  • Windows Media Center. Domowe centrum rozrywki
  • Ruby on Rails. Ćwiczenia
  • Przywództwo w Å›wiecie VUCA. Jak być skutecznym liderem w niepewnym Å›rodowisku
  • Scrum. O zwinnym zarzÄ…dzaniu projektami. Wydanie II rozszerzone
  • Od hierarchii do turkusu, czyli jak zarzÄ…dzać w XXI wieku

Dodaj do koszyka Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Spis treści

Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more eBook -- spis treści

  • 1. Causality – Hey, We Have Machine Learning, So Why Even Bother?
  • 2. Judea Pearl and the Ladder of Causation
  • 3. Regression, Observations, and Interventions
  • 4. Graphical Models
  • 5. Forks, Chains, and Immoralities
  • 6. Nodes, Edges, and Statistical (In)dependence
  • 7. The Four-Step Process of Causal Inference
  • 8. Causal Models – Assumptions and Challenges
  • 9. Causal Inference and Machine Learning – from Matching to Meta- Learners
  • 10. Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More
  • 11. Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond
  • 12. Can I Have a Causal Graph, Please?
  • 13. Causal Discovery and Machine Learning – from Assumptions to Applications
  • 14. Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond
  • 15. Epilogue

Dodaj do koszyka Causal Inference and Discovery in Python. Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.