Building Data-Driven Applications with LlamaIndex. A practical guide to retrieval-augmented generation (RAG) to enhance LLM applications - Helion
Tytuł oryginału: Building Data-Driven Applications with LlamaIndex. A practical guide to retrieval-augmented generation (RAG) to enhance LLM applications
ISBN: 9781805124405
stron: 368, Format: ebook
Data wydania: 2024-05-10
Księgarnia: Helion
Cena książki: 129,00 zł
Discover the immense potential of Generative AI and Large Language Models (LLMs) with this comprehensive guide. Learn to overcome LLM limitations, such as contextual memory constraints, prompt size issues, real-time data gaps, and occasional ‘hallucinations’. Follow practical examples to personalize and launch your LlamaIndex projects, mastering skills in ingesting, indexing, querying, and connecting dynamic knowledge bases. From fundamental LLM concepts to LlamaIndex deployment and customization, this book provides a holistic grasp of LlamaIndex's capabilities and applications. By the end, you'll be able to resolve LLM challenges and build interactive AI-driven applications using best practices in prompt engineering and troubleshooting Generative AI projects.
Osoby które kupowały "Building Data-Driven Applications with LlamaIndex. A practical guide to retrieval-augmented generation (RAG) to enhance LLM applications", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Building Data-Driven Applications with LlamaIndex. A practical guide to retrieval-augmented generation (RAG) to enhance LLM applications eBook -- spis treści
- 1. Understanding Large Language Models
- 2. LlamaIndex: The Hidden Jewel - An Introduction to the LlamaIndex Ecosystem
- 3. Kickstarting Your Journey with LlamaIndex
- 4. Ingesting Data into Our RAG Workflow
- 5. Indexing with LlamaIndex
- 6. Querying Our Data, Part 1 – Context Retrieval
- 7. Querying Our Data, Part 2 – Postprocessing and Response Synthesis
- 8. Building Chatbots and Agents with LlamaIndex
- 9. Customizing and Deploying Our LlamaIndex Project
- 10. Prompt Engineering Guidelines and Best Practices
- 11. Conclusions and Additional Resources