Bash for Data Scientists. A Comprehensive Guide to Shell Scripting for Data Science Tasks - Helion
Tytuł oryginału: Bash for Data Scientists. A Comprehensive Guide to Shell Scripting for Data Science Tasks
ISBN: 9781836647140
stron: 293, Format: ebook
Data wydania: 2024-07-23
Księgarnia: Helion
Cena książki: 170,10 zł (poprzednio: 189,00 zł)
Oszczędzasz: 10% (-18,90 zł)
This book introduces powerful command line utilities for creating efficient shell scripts to process datasets. Using the bash shell, the examples and scripts focus on small datasets to help readers understand the features of grep, sed, and awk. Companion files with code are available for download from the publisher.
The course starts with an introduction to the basics, covering files and directories, and useful commands. It then progresses to conditional logic and loops, providing a solid foundation for processing datasets. Detailed chapters on using grep, sed, and awk illustrate their capabilities in handling and cleaning various types of datasets effectively.
Advanced topics include processing datasets with Pandas, exploring NoSQL, SQLite, and Python. The book equips data scientists, analysts, and anyone seeking shell-based solutions with practical skills. By the end, users will be adept at creating robust scripts for dataset processing, combining command line utilities for optimal results.
Osoby które kupowały "Bash for Data Scientists. A Comprehensive Guide to Shell Scripting for Data Science Tasks", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Bash for Data Scientists. A Comprehensive Guide to Shell Scripting for Data Science Tasks eBook -- spis treści
- 1. Introduction
- 2. Files and Directories
- 3. Useful Commands
- 4. Conditional Logic and Loops
- 5. Processing Datasets with grep and sed
- 6. Processing Datasets with awk
- 7. Processing Datasets (Pandas)
- 8. NoSQL, SQLite, and Python