Apache Spark for Data Science Cookbook. Solve real-world analytical problems - Helion
Tytuł oryginału: Apache Spark for Data Science Cookbook. Solve real-world analytical problems
ISBN: 9781785288807
stron: 392, Format: ebook
Data wydania: 2016-12-22
Księgarnia: Helion
Cena książki: 139,00 zł
Spark has emerged as the most promising big data analytics engine for data science professionals. The true power and value of Apache Spark lies in its ability to execute data science tasks with speed and accuracy. Spark’s selling point is that it combines ETL, batch analytics, real-time stream analysis, machine learning, graph processing, and visualizations. It lets you tackle the complexities that come with raw unstructured data sets with ease.
This guide will get you comfortable and confident performing data science tasks with Spark. You will learn about implementations including distributed deep learning, numerical computing, and scalable machine learning. You will be shown effective solutions to problematic concepts in data science using Spark’s data science libraries such as MLLib, Pandas, NumPy, SciPy, and more. These simple and efficient recipes will show you how to implement algorithms and optimize your work.
Osoby które kupowały "Apache Spark for Data Science Cookbook. Solve real-world analytical problems", wybierały także:
- Windows Media Center. Domowe centrum rozrywki 66,67 zł, (8,00 zł -88%)
- Ruby on Rails. Ćwiczenia 18,75 zł, (3,00 zł -84%)
- Przywództwo w świecie VUCA. Jak być skutecznym liderem w niepewnym środowisku 58,64 zł, (12,90 zł -78%)
- Scrum. O zwinnym zarządzaniu projektami. Wydanie II rozszerzone 58,64 zł, (12,90 zł -78%)
- Od hierarchii do turkusu, czyli jak zarządzać w XXI wieku 58,64 zł, (12,90 zł -78%)
Spis treści
Apache Spark for Data Science Cookbook. Solve real-world analytical problems eBook -- spis treści
- 1. Big Data Analytics with Spark
- 2. Tricky Statistics with Spark
- 3. Data Analysis With Spark
- 4. Clustering, Classification and Regression
- 5. Working With Spark MLLib
- 6. NLTK with Spark
- 7. Effectively Using OpenNLP With Spark
- 8. Data Visualization With Spark
- 9. Deep Learning on Spark
- 10. Working With SparkR