reklama - zainteresowany?

Algorytmy Data Science. Siedmiodniowy przewodnik. Wydanie II - Helion

Algorytmy Data Science. Siedmiodniowy przewodnik. Wydanie II
Autor: David Natingga
Tytuł oryginału: Data Science Algorithms in a Week: Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition
Tłumaczenie: Andrzej Grażyński
ISBN: 978-83-283-5602-3
stron: 208, Format: 168x237, okładka: miękka
Księgarnia: Helion

Cena książki: 49,00 zł

Książka będzie dostępna od września 2019

Tagi: Algorytmy - Programowanie | Analiza danych | Inne | Python - Programowanie | Uczenie maszynowe

Data science jest interdyscyplinarną dziedziną naukową łączącą osiągnięcia uczenia maszynowego, statystyki i eksploracji danych. Umożliwia wydobywanie nowej wiedzy z istniejących danych poprzez stosowanie odpowiednich algorytmów i analizy statystycznej. Stworzono dotąd wiele algorytmów tej kategorii i wciąż powstają nowe. Stanowią one podstawę konstruowania modeli umożliwiających wyodrębnianie określonych informacji z danych odzwierciedlających zjawiska zachodzące w świecie rzeczywistym, pozwalają też na formułowanie prognoz ich przebiegu w przyszłości. Algorytmy data science są postrzegane jako ogromna szansa na zdobycie przewagi konkurencyjnej, a ich znaczenie stale rośnie.

Ta książka jest zwięzłym przewodnikiem po algorytmach uczenia maszynowego. Jej cel jest prosty: w ciągu siedmiu dni masz opanować solidne podstawy siedmiu najważniejszych dla uczenia maszynowego algorytmów. Opisom poszczególnych algorytmów towarzyszą przykłady ich implementacji w języku Python, a praktyczne ćwiczenia, które znajdziesz na końcu każdego rozdziału, ułatwią Ci lepsze zrozumienie omawianych zagadnień. Co więcej, dzięki książce nauczysz się właściwie identyfikować problemy z zakresu data science. W konsekwencji dobieranie odpowiednich metod i narzędzi do ich rozwiązywania okaże się dużo łatwiejsze.

W tej książce:

  • efektywne implementacje algorytmów uczenia maszynowego w języku Python
  • klasyfikacja danych przy użyciu twierdzenia Bayesa, drzew decyzyjnych i lasów losowych
  • podział danych na klastery za pomocą algorytmu k-średnich
  • stosowanie analizy regresji w parametryzacji modeli przewidywań
  • analiza szeregów czasowych pod kątem trendów i sezonowości danych

Algorytmy data science: poznaj, zrozum, zastosuj!

 

Zobacz także:

  • Algorytmy. Wydanie IV
  • Algorytmy. Ilustrowany przewodnik
  • Tablice informatyczne. Algorytmy
  • Algorytmy i struktury danych

Spis treści

Algorytmy Data Science. Siedmiodniowy przewodnik. Wydanie II -- spis treści

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2019 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.